Cho hình chữ nhật ABCD có S=4\(\sqrt{3}\) . AH vuông góc BD. AH = \(\sqrt{3}\). Tính chiều rộng của HCN đó.
Chỉ cần đáp án
Cho hình chữ nhật ABCD có diện tích 4$\sqrt{3}$ cm2. Kẻ AH vuông góc BD tạ H. Biế AH=căn 3 cm. chiều rộng hình chữ nhật là...cm
Cho hình chữ nhật ABCD có diện tích \(4\sqrt{3}\) cm^2. Kẻ AH vuông với BD tại H, biết AH= \(\sqrt{3}\)cm. Chiều rộng của hình chữ nhật đã cho là?
Cho hình chữ nhật ABCD, kẻ AH vuông góc với BD.Tính chiều rộng của hình chữ nhật,biết AH=\(\sqrt{3}\) và \(S_{ABCD}=4\sqrt{3}\)
Cho hình chữ nhật ABCD có diện tích là \(4\sqrt{3}\)cm2. Kẻ AH vuông góc với BD tại H, biết AH= \(\sqrt{3}\)cm. Chiều rộng hình chữ nhật đã cho là...?
(Violympic vòng 2 lớp 9)
cho hình chữ nhật ABCD có diện tích là 4 nhaan căn 3 cm2.kẻ AH VUÔNG GÓC VỚI BDtại H ,biết AH BẰNG căn 3 cm.tính chiều dài của hcn
Diện tích tam giác vuông ABD vuông tại A được tính theo 2 cách:
\(S_{ABD}=\frac{AB\times AD}{2}=\frac{AH\times BD}{2}=\frac{S_{ABCD}}{2}=\frac{4\sqrt{3}}{2}\)
=> \(AH\times BD=4\sqrt{3}\)
=> \(BD\times\sqrt{3}=4\sqrt{3}\)
=> \(BD=4\left(cm\right)\)
Tam giác AHB đồng dạng tam giác DHA theo trường hợp góc - góc nên suy ra:
\(\frac{AH}{HD}=\frac{BH}{AH}\) => \(AH^2=BH\times DH=\left(BD-DH\right)\times DH\)
=> \(\left(\sqrt{3}^2\right)=3=\left(4-DH\right)\times DH\)
=> \(4DH-DH^2-3=0\)
=> \(-\left(DH^2-4DH+3\right)=0\)
=> \(DH^2-4DH+3=0\)
=> \(DH^2-DH-3DH+3=0\)
=> \(DH\left(DH-1\right)-3\left(DH-1\right)=0\)
=> \(\left(DH-1\right)\left(DH-3\right)=0\)
Với trường hợp DH=1 (cm) thì theo định lí Pytago, ta sẽ tính được AD=2(cm)
Với trường hợp DH=3(cm) thì theo định lí Pytago, ta sẽ tính được \(AD=\sqrt{12}\left(cm\right)\)
Vậy độ dài chiều dài của hình chữ nhật đó là \(\sqrt{12}\left(cm\right)\)
Cho hcn ABCD có AB =2AD và AC = \(4\sqrt{5}\)
Vẽ AH vuông góc BD . Tính CH
ABCD là hình chữ nhật
=>AC=BD và AB^2+AD^2=BD^2
=>\(AB^2+AD^2=\left(4\sqrt{5}\right)^2=80\)
=>5AD^2=80
=>AD^2=16
=>AD=4
=>AB=8
ΔABD vuông tại A có AH là đường cao
nên AH*BD=AB*AD
=>AH*4căn 5=32
=>\(AH=\dfrac{8}{\sqrt{5}}\)
ΔABD vuông tại A có AH là đường cao
nên DH*DB=AD^2
=>\(DH\cdot4\sqrt{5}=4^2=16\)
=>\(DH=\dfrac{4}{\sqrt{5}}\)
Kẻ CK vuông góc BD, O là giao điểm của AC và BD
ABCD là hình chữ nhật
=>AC=BD và AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
=>DO=2căn 5
\(HO=2\sqrt{5}-\dfrac{4}{\sqrt{5}}=2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)
Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
Do đó: ΔAHD=ΔCKB
=>AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
=>O là trung điểm của HK
=>HK=2*HO=12*căn 5/5
\(AK=\sqrt{AH^2+HK^2}=\dfrac{4\sqrt{65}}{5}\)
=>\(CH=\dfrac{4\sqrt{65}}{5}\)
Cho hình chữ nhật ABCD có AB=20 cm, AD=15 cm. Vẽ AH vuông góc với BD thuộc B
a/ Tính DB và AH
b/Chứng minh tam giác ADB đồng dạng tam giác HDA
c/Vẽ HM vuông góc AD-chứng minh tam giác AMN đồng dạng tam giác ABD
Mong có đáp án sớm mai mik thi rồi
a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
Do đó: ΔADB\(\sim\)ΔHDA
Hình chữ nhật ABCD có diện tích là 4 căn 3 cm^2.Kẻ đường AH vuông với BD tại H,biết AH =căn 3.Tính chiều rộng
Giúp mk nka
chiều nay mk nộp....iu mấy bn
Cho hình chữ nhật ABCD. Từ A hạ AH vuông góc với BD (H thuộc BD).
a) Cho biết BD=5cm, AH=2,4 cm. Tính diện tích hình chữ nhật ABCD.
b) Gọi O là trung điểm của BD. Tính OH.
Giúp em với ạ!!Em đang cần gấp
a: \(\left\{{}\begin{matrix}AB^2+AD^2=BD^2=25\\\dfrac{1}{AB^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}=\dfrac{25}{144}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=3\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow S_{ABCD}=AB\cdot AC=12\left(cm^2\right)\)