Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long quyền tiểu tử
Xem chi tiết
Nguyễn Anh Huy
10 tháng 12 2017 lúc 15:14

cacbuoi

Thư Nguyễn
Xem chi tiết
doantrancaotri
4 tháng 11 2016 lúc 12:50

a) Tam giác ABC có AB = AC nên tam giác ABC cân tại A

\(\Delta ABE\)\(\Delta ACD\) ( cgc ) ( AB = AC (gt) ; \(\widehat{B}\) =\(\widehat{C}\) ( tam giác ABC cân tại A) ; BE = CD = \(\frac{2}{3}\) BC )

Do đó \(\widehat{BAE}\) = \(\widehat{DAC}\) => tam giác DAE cân tại A

b) tam giác ABC cân tại A có AM là đường trung tuyến => AM là đường cao của tam giác ABC .

Tam giác DAE cân tại A có AM là đường cao ứng với cạnh DE => AM là đường phân giác của tam giác DAE => AM là tia phân giác của \(\widehat{DAE}\) 

c) Tam giác DAE cân tại A có \(\widehat{DAE}\) = 60 => Tam giác DAE là tam giác đều => mỗi góc trong tam giác DAE đều là 600

Thaomy
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Huỳnh Hoàng Thanh Như
Xem chi tiết
dinh xuan bay
6 tháng 3 2016 lúc 16:07

tích mk rồi mk giải cho

Xem chi tiết
suho
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 11:22

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: AD=DE

c: Ta có: BA=BE

nên B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

hay BD⊥AE

songoku
Xem chi tiết
Trần Thị Hoa
23 tháng 11 2015 lúc 20:18

Bài làm thì dài lắm nên mik nói qua thôi

Bài 1

a) Vì AB=AC => tam giác ABC cân tại A

=>AH là đường trung tuyến ứng với BC mà trong tam giác cân đường trung tuyến cũng chính là đường phân giác và đường trung trực nên =>đpcm

b)Vì HK=HA ;BH=CH và AH vuông góc với BC nên ABKC là hình thoi(tứ giác có 2 đường chéo cắt nhau ở trung điểm mỗi đường và vuông góc với nhau)

=>AB song song với CK (tính chất 2 cạnh đối của hình thoi)

sakura
Xem chi tiết
Ngô Hoàng Thanh Vân
21 tháng 11 2016 lúc 21:31

A B C D E M

a, Xet tam giac ABD va tam giac ACE co

.AB=AC

.BD=EC

.AD=AE

suy ra 2 tam giac bang nhau(c.c.c) suy ra goc BAD=CAE (2 goc tuong ung)

goc EAB=BAD+DAE

goc DAC=CAE+DAE

suy ra goc EAB=DAC

b, Xet tam giac DAE co AD=AE suy ra tam giac DAE can tai A (1)

MB=MC, BD=CE suy ra DM=ME suy ra AM la trung tuyen tam giac AED (2)

(1,2) suy ra AM la phan giac goc DAE

c, Tam giac DAE can tai A (cmt) goc DAE=60 suy ra ADE=AED=60

Vay cac goc cua tam giac AED bang nhau = 60