Giá trị x thỏa mãn : x+2y-3z=-20 và \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Mình cần cách làm
Cho 3 số dương x,y,z thỏa mãn x+2y+3z=20. Tìm giá trị nhỏ nhất của biểu thức \(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)
\(\ge13\)
Dấu "=" xảy ra tại x=2;y=3;z=4
Để ý điểm rơi mà làm bạn :)
Quan trọng lại việc tìm điểm rơi như thế nào?
Another Way:
\(M=\frac{3yz\left(x-2\right)^2+2zx\left(y-3\right)^2+xy\left(z-4\right)^2}{4xyz}+13\ge13\)
Cho x, y, z > 0 và thỏa mãn x + 2y + 3z > 20
Tìm GTNN của biểu thức : P = \(x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
Biết trước điểm rơi rồi thì quá EZ.
\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)
\(\ge13\)
Dấu "=" xảy ra tại a=2;b=3;c=4
Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) . Tính giá trị của biểu thức
\(A=\frac{x+2y+3z}{3x+2y+z}\) ?
- Làm theo 2 cách
Cách 1: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\Rightarrow\begin{cases}x=2.k\\y=3.k\\z=4.k\end{cases}\)
Ta có: \(A=\frac{x+2y+3z}{3x+2y+z}=\frac{2.k+2.3.k+3.4.k}{3.2.k+2.3.k+4.k}=\frac{2.k+6.k+12.k}{6.k+6.k+4.k}=\frac{20.k}{16.k}=\frac{5}{4}\)
Cách 2: Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{3x}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y+3z}{2+6+12}=\frac{x+2y+3z}{20}\left(1\right)\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x}{6}=\frac{2y}{6}=\frac{3x+2y+z}{6+6+4}=\frac{3x+2y+z}{16}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x+2y+3z}{20}=\frac{3x+2y+z}{16}\)
\(\Rightarrow A=\frac{x+2y+3z}{3x+2y+z}=\frac{20}{16}=\frac{5}{4}\)
Biết x , y , z thỏa mãn:\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z=-10
Biết x,y,z thỏa mãn \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z=-10 ,tính x+y+z
Ta có: \(\frac{x-1+1}{2+1}=\frac{y-2+2}{3+2}=\frac{z-3+3}{4+3}=\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x}{3}=\frac{2y}{10}=\frac{3z}{21}=\frac{-10}{14}=\frac{-5}{7}\)
\(\Rightarrow\frac{x}{3}=\frac{-5}{7}\Rightarrow x=\frac{-15}{7};\frac{y}{5}=\frac{-5}{7}\Rightarrow y=\frac{-25}{7};\frac{z}{7}=\frac{-5}{7}\Rightarrow z=-5\)
Cho các số thực x,y,z thỏa mãn \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{4}\).Tính giá trị biểu thúc
A=(3x+2y-3z)2018+(z-2x +1)2019+(2y-x-z)2020
Biết x,y,z thỏa mãn\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x- 2y+ 3z = -10. Khi đó x+y+z
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=>
\(\frac{x-1}{2}\)= \(\frac{2y-4}{6}\)= \(\frac{3z-9}{12}\)= \(\frac{x-1-2y-4+3z-9}{2-6+12}\)=\(\frac{\left(-10\right)-6}{8}\)=\(\frac{-16}{8}\)= -2
-> \(\frac{x-1}{2}\)= - 2 => x = -3 (1)
-> \(\frac{y-2}{3}\)= - 2 => y = -7 (2)
-> \(\frac{z-3}{4}\)= - 2 => z = -5 (3)
Từ (1), (2) và (3) suy ra: x + y + z = (-3) + (-7) + (-5) = - 15
Cho x,y,z thỏa mãn \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)và x-y=15 khi đó x-y-z=?
Cho 3 số x, z, y khác 0 thỏa mãn điều kiện : \(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+-nz}{z}=\frac{x+y+z-nt}{t}\) (n là số tự nhiên) và x+y+z+t=2012. Tính giá trị của bt P = x+2y-3z+t
=y+z+t/x - n.x/x=z+t+x/y - n.y/y=t+x+y/z - n.z/z=x+y+z/t - n.t/t
=y+z+t/x - n=z+t+x/y - n=t+x+y/z - n=x+y+z/t - n
=y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t=y+z+t+z+t+x+t+x+y+x+y+z/x+y+z+t=3.(x+y+z+t)/x+y+z+t=3
ok bạn tiếp tục làm được nhé cho mih nha