Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Mai
Xem chi tiết
coolkid
27 tháng 2 2020 lúc 22:14

\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)

\(\ge13\)

Dấu "=" xảy ra tại x=2;y=3;z=4

Khách vãng lai đã xóa
coolkid
27 tháng 2 2020 lúc 22:11

Để ý điểm rơi mà làm bạn :)

Khách vãng lai đã xóa
Không Tên
28 tháng 2 2020 lúc 10:17

Quan trọng lại việc tìm điểm rơi như thế nào?

Another Way:

\(M=\frac{3yz\left(x-2\right)^2+2zx\left(y-3\right)^2+xy\left(z-4\right)^2}{4xyz}+13\ge13\)

Khách vãng lai đã xóa
roronoa zoro
Xem chi tiết
zZz Cool Kid_new zZz
18 tháng 12 2019 lúc 20:47

Biết trước điểm rơi rồi thì quá EZ.

\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)

\(\ge13\)

Dấu "=" xảy ra tại a=2;b=3;c=4

Khách vãng lai đã xóa
Mai Anh Pen Tapper
Xem chi tiết
soyeon_Tiểubàng giải
28 tháng 10 2016 lúc 18:53

Cách 1: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\Rightarrow\begin{cases}x=2.k\\y=3.k\\z=4.k\end{cases}\)

Ta có: \(A=\frac{x+2y+3z}{3x+2y+z}=\frac{2.k+2.3.k+3.4.k}{3.2.k+2.3.k+4.k}=\frac{2.k+6.k+12.k}{6.k+6.k+4.k}=\frac{20.k}{16.k}=\frac{5}{4}\)

Cách 2: Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{3x}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y+3z}{2+6+12}=\frac{x+2y+3z}{20}\left(1\right)\)

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x}{6}=\frac{2y}{6}=\frac{3x+2y+z}{6+6+4}=\frac{3x+2y+z}{16}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x+2y+3z}{20}=\frac{3x+2y+z}{16}\)

\(\Rightarrow A=\frac{x+2y+3z}{3x+2y+z}=\frac{20}{16}=\frac{5}{4}\)

TFBOYS
Xem chi tiết
Trần Thảo Nguyên
Xem chi tiết
Wang Jun Kai
13 tháng 10 2015 lúc 20:36

Ta có: \(\frac{x-1+1}{2+1}=\frac{y-2+2}{3+2}=\frac{z-3+3}{4+3}=\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x}{3}=\frac{2y}{10}=\frac{3z}{21}=\frac{-10}{14}=\frac{-5}{7}\)

\(\Rightarrow\frac{x}{3}=\frac{-5}{7}\Rightarrow x=\frac{-15}{7};\frac{y}{5}=\frac{-5}{7}\Rightarrow y=\frac{-25}{7};\frac{z}{7}=\frac{-5}{7}\Rightarrow z=-5\)

Trần Thế Anh
Xem chi tiết
Anh Ruby
Xem chi tiết
Vương Hạ Thiên
3 tháng 11 2015 lúc 20:31

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=>

\(\frac{x-1}{2}\)\(\frac{2y-4}{6}\)\(\frac{3z-9}{12}\)\(\frac{x-1-2y-4+3z-9}{2-6+12}\)=\(\frac{\left(-10\right)-6}{8}\)=\(\frac{-16}{8}\)= -2

-> \(\frac{x-1}{2}\)= - 2 => x = -3 (1)

-> \(\frac{y-2}{3}\)= - 2 => y = -7 (2)

-> \(\frac{z-3}{4}\)= - 2 => z = -5 (3)

Từ (1), (2) và (3) suy ra: x + y + z = (-3) + (-7) + (-5) = - 15

Yuu Shinn
3 tháng 11 2015 lúc 20:12

-19

100...........%

Phạm Ngọc Thuý An
Xem chi tiết
Chibi cute
Xem chi tiết
Đỗ Thanh Tùng
14 tháng 11 2018 lúc 18:59

=y+z+t/x - n.x/x=z+t+x/y - n.y/y=t+x+y/z - n.z/z=x+y+z/t - n.t/t

=y+z+t/x - n=z+t+x/y - n=t+x+y/z - n=x+y+z/t - n

=y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t=y+z+t+z+t+x+t+x+y+x+y+z/x+y+z+t=3.(x+y+z+t)/x+y+z+t=3

ok bạn tiếp tục làm được nhé cho mih nha

chép mạng
27 tháng 2 2019 lúc 22:53

7a5 ddieemr danh