Chứng tỏ rằng :6m và m có chữ số tận cùng như nhau khi m chẵn
2 Chứng tỏ rằng : 6mva m có chữ số tận cùng như nhau khi m chẵn
Cho số tự nhiên n. Chứng minh rằng:
a, Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau
b, Nếu b tận cùng bằng chữ số lẻ khác 5 thì n^4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
c, Số N^5 và n có chữ số tận cùng như nhau
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
Cho số tự nhiên n. Chứng minh rằng :
a) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau.
b) Nếu n tận cùng bằng chữ số lẻ khác 5 thì n4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n4 tận cùng bằng 6.
c) Số n5 và n có chữ số tận cùng như nhau.
Cho số tự nhiên n. Chứng minh rằng :
a) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau.
b) Nếu n tận cùng bằng chữ số lẻ khác 5 thì n4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n4 tận cùng bằng 6.
c) Số n5 và n có chữ số tận cùng như nhau.
a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.
Cách 2. Xét hiệu 6n−n=5n chia hết cho 10 vì n chẵn.b) Nếu n tận cùng bằng 1 hoặc 9 thì n2 tận cùng bằng 1, do đó n4 tận cùng bằng 1. Nếu n tận cùng bằng 3 hoặc 7 thì n2 tận cùng bằng 9, do đó n4 tận cùng bằng 1. Nếu n tận cùng bằng 4 hoặc 6 thì n2 tận cùng bằng 6, do đó n4 tận cùng bằng 6. Nếu n tận cùng bằng 2 hoặc 8 thì n2 tận cùng bằng 4, da) n là số chẵn
\(\Rightarrow\) n = 2k
\(\Rightarrow\) 6n = 12k
Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.
\(\Rightarrow\) n và 6n có tận cùng như nhau
\(\Rightarrow\) ĐPCM
Cho số tự nhiên n .Chứng minh rằng :
Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau.
Ta có: n có tận cùng là CS chẵn
=>n chia hết cho 2
=>5n chia hết cho 10
=>5n có CSTC là CS 0
=>5n+n có CSTN là n
=>6n và n có cùng 1 CSTC (đpcm)
cho tự nhiên n chứng minh rằng :
a)nếu n tận cùng bằng chu\ữ số chẵn thì 6n có chữ số tận cùng như nhau
b)nếu n tận cùng bằng chữ số lẻ khác 5 thì n^4taanj cùng bằng 1 nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
c)số n^5 và n có chữ số tận cùng như nhau
Cho số tự nhiên n. Chứng minh rằng:
a) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau
b) Nếu n tận cùng bằng chữ số lẻ khác 5 thì n4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì 4n tận cùng bằng 6
c) Số n5 và n có chữ số tận cùng như nhau
Cho số tự nhiên n . Chứng minh rằng :
a ) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau
b ) Nếu n tận cùng bằng chữ số lẻ khác 5 thì \(n^4\)cùng bằng 1 . Nếu n tận cùng bằng chữ số chẵn khác thì \(n^4\)tận cùng bằng 6
c ) Số \(n^5\)và n có chữ số tận cùng như nhau
Câu 1:chứng tỏ rằng các số sau có chữ số tận cùng giống nhau:
a) 11m và m (m thuộc N)
b)7a và 2a (a là số chẵn)
Câu 2:chứng tỏ rằng các tổng và hiệu sau chia hết cho 10
a)481n + 19991999
b)162001 - 82000