\(\frac{a}{b}=\frac{2,1}{2,7}\),5a-4b=-1.giá trị của (a-b)2
Cho a/b = 2,1/2,7, 5a - 4b = -1. Giá trị ( a-b )^2 là ???
1,Giá trị x thỏa mãn : \(\frac{x}{-8}=\frac{-18}{x}\)
2, Tập hợp giá trị x nguyên thỏa mãn : | 2x-7| + | 2x + 1 | \(\le\) 8
3,Cho \(\frac{a}{b}=\frac{2,1}{2,7}\) ; 5a- 4b = -1 . Giá trị \(\left(a-b\right)^2\) là
4, Cho \(\frac{a}{b}=\frac{9,6}{12,8};a^2+b^2=25\) . Giá trị | a + b| là ......
Bài 1:
\(\frac{x}{-8}=\frac{-18}{x}\)
\(\Rightarrow x^2=144\)
\(\Rightarrow x=\pm12\)
Vậy \(x=\pm12\)
Bài 3:
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\Rightarrow\frac{a}{21}=\frac{b}{27}\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{9}=\frac{5a}{35}=\frac{4b}{36}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
+) \(\frac{a}{7}=1\Rightarrow a=7\)
+) \(\frac{b}{9}=1\Rightarrow b=9\)
\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)
Vậy \(\left(a-b\right)^2=4\)
Bài 4:
Giải:
Ta có: \(\frac{a}{b}=\frac{9,6}{12,8}\Rightarrow\frac{a}{9,6}=\frac{b}{12,8}\Rightarrow\frac{a}{96}=\frac{b}{128}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)
\(\Rightarrow a=3k,b=4k\)
Mà \(a^2+b^2=25\)
\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=25\)
\(\Rightarrow9.k^2+16.k^2=25\)
\(\Rightarrow25k^2=25\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow a=3;b=4\)
+) \(k=-1\Rightarrow a=-3;b=-4\)
\(\Rightarrow\left|a+b\right|=\left|3+4\right|=\left|-3+-4\right|=7\)
Vậy \(\left|a+b\right|=7\)
Áp dụng BĐT
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)Ta có:
\(\left|2x-7\right|+\left|2x+1\right|=\left|2x-7\right|+\left|-2x-1\right|\ge\left|2x-7+\left(-2x-1\right)\right|=8\)
Mà \(\left|2x-7\right|+\left|2x+1\right|\ge\)8 nên không có số nguyên x nào thỏa mãn đề ra
Cho a/b = 2,1/ 2,7 ; 5a - 4b = -1. Giá trị ( a - b)2 là bao nhieu?
Ta Có :
\(\frac{a}{b}=\frac{2,1}{2,7}=\frac{7}{9}\)
=> \(\frac{a}{b}=\frac{7}{9}\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{7}-\frac{b}{9}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
=> \(\frac{a}{7}=1\Rightarrow a=7\)
=> \(\frac{b}{9}=1\Rightarrow b=9\)
=> (a - b)2 = (9 - 7)2 = 22 = 4
Bài làm :
Ta có :
\(\frac{a}{b}=\frac{2,1}{2,7}=\frac{7}{9}\)
\(\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta có :
\(\frac{a}{7}-\frac{b}{9}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
\(\Rightarrow\orbr{\begin{cases}\frac{a}{7}=1\Rightarrow a=7\\\frac{b}{9}=1\Rightarrow b=9\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=4\)
cho a/b=2,1/2,7 , 5a-4b=-1 hỏi (a-b)^2=...
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2,1}=\frac{b}{2,7}=\frac{5a}{10,5}=\frac{4b}{10,8}=\frac{5a+4b}{10,5-10,8}=\frac{-1}{-0,3}=\frac{10}{3}\)
+) \(\frac{a}{2,1}=\frac{10}{3}\Rightarrow a=7\)
+) \(\frac{b}{2,7}=\frac{10}{3}\Rightarrow b=9\)
\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)
Vậy \(\left(a-b\right)^2=4\)
Tính giá trị của (a+b)^2 biết a/b = 2,1/2,8 và 5a-4b =-1
Bạn nói thé tớ cũng không hiểu cho lắm
...
Tính giá trị của (a+b)2 biết a:b = 2,1:2,8 và 5a-4b =-1
cho các số a,b,c thõa mãn 5a=4b=2c và a-b+c=-18. tính giá trị của biểu thức \(P=\left(\frac{2}{a}+\frac{5}{b}+\frac{5}{c}\right)^{2017}\)
Giá trị a2+b2 biết
\(\frac{a}{b}\)=\(\frac{2.1}{2.8}\)và 5a - 4b =-1
Theo đề bài, ta có:
\(\frac{a}{b}=\frac{2,1}{2,8}\Rightarrow\frac{a}{2,1}=\frac{b}{2,8}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2,1}=\frac{b}{2,8}=\frac{5a-4b}{5.2,1-4.2,8}=\frac{-1}{-0,7}=\frac{10}{7}\)
\(.\frac{a}{2,1}=\frac{10}{7}\Rightarrow a=3\)
\(.\frac{b}{2,8}=\frac{10}{7}\Rightarrow b=4\)
\(\Rightarrow a^2+b^2=3^2+4^2=9+16=25\)
cho mk nhé
Cho biểu thức sau:
\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
a, Rút gọn biểu thức P
b, Tính giá trị của P khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)
ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)
\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)
\(=\frac{8ab}{a^4b^4-16}\)
b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)
=> (a2 + 4).9 = a2(b2 + 9)
=> 9a2 + 36 = a2b2 + 9a2
=> a2b2 = 36
=> (ab)2 = 36
=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)
Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)
Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)