Phân tích đa thức thành nhân tử :
a, \(x^2-x-6\)
\(b,x^3-x^2-14x+24\)
HELPPPPPPPPPP
1, phân tích đa thức thành nhân tử a, x^4 - 2x^3 - 13x^2 - 14x - 24 b, x^4 - 3x^3 + 5x^2 -9x+6 c, x^4 + 2x^3 - 4x^2 - 5x - 6 d, x^4 + 2021x^2 + 2021x + 2021
nhờ mn là giúp mình với ạ , minh đang cần gấp :(
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
phân tích đa thức thành nhân tử : x^3 - x^2 -14x +24
Phân tích đa thức thành nhân tử: x4+2.x3-13.x2-14x+24
x4+2.x3-13.x2-14x+24
=x3.(x+2)-13x2+12x-26x+24
=x3.(x+2)-x.(13x-12)-2.(13x-12)
=x3.(x+2)-(13x-12)(x+2)
=(x+2)(x3-13x+12)
=(x+2)(x3-x-12x+12)
=(x+2)[x.(x2-1)-12.(x-1)]
=(x+2)[x.(x-1)(x+1)-12.(x-1)]
=(x+2)(x-1)[x.(x+1)-12]
=(x+2)(x-1)(x2+x-12)
=(x+2)(x-1)(x2-3x+4x-12)
=(x+2)(x-1)[x.(x-3)+4.(x-3)]
=(x+2)(x-1)(x-3)(x+4)
Phân tích đa thức thành nhân tử:
\(x^3-x^2-14x+24\)
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right)\left(x^2+4x-3x-12\right)\)
\(=\left(x-2\right)\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
Ta có:\(x^3-x^2-14x+24=\left(x^3-2x^2\right)+\left(x^2-2x\right)-\left(12x-24\right)\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right)\left(x^2-3x+4x-12\right)\)
\(=\left(x-2\right)\left[x\left(x-3\right)+4\left(x-3\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
Ta có:
\(x^3-x^2-14x+24\) \(=x^3+4x^2-5x^2-20x+6x+24\)
\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)
\(=\left(x+4\right)\left(x^2-5x+6\right)\)
\(=\left(x+4\right)\left(x^2-3x-2x+6\right)\)
\(=\left(x+4\right)[x\left(x-3\right)-2\left(x-3\right)]\)
\(=\left(x+4\right)\left(x-2\right)\left(x-3\right).\)
Vậy \(x^3-x^2-14x+24=\left(x+4\right)\left(x-2\right)\left(x-3\right).\)
Phân tích đa thức thành nhân tử
a) \(x^3-7x-6\)
b) \(x^3-x^2-14x+24\)
a) \(x^3-7x-6=x^3-x^2+x^2-7x-6=x^2\left(x-1\right)+x^2-x-6x+6\)
\(=x^2\left(x-1\right)+\left(x\left(x-1\right)-6\left(x-1\right)\right)\)
\(=\left(x-1\right)\left(x^2+x-6\right)=\left(x-1\right)\left(x^2-2x+3x-6\right)\)
\(\left(x-1\right)\left(x\left(x-2\right)+3\left(x-2\right)\right)=\left(x-1\right)\left(x-2\right)\left(x+3\right)\)
b)\(x^3-x^2-14x+24=x^3-3x^2+2x^2-6x-8x+24\)
\(=x^2\left(x-3\right)+2x\left(x-3\right)-8\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+2x-8\right)=\left(x-3\right)\left(x^2-2x+4x-8\right)\)
\(=\left(x-3\right)\left(x\left(x-2\right)+4\left(x-2\right)\right)=\left(x-3\right)\left(x-2\right)\left(x+4\right)\)
CÓ CHỖ NÀO KO HIỂU GỬI THƯ HỎI MIK , MIK NÓI CHO !!~ HOK TỐT ~
Phân tích đa thức thành nhân tử (bậc cao)
a) x^3-4x^2+x-6 (gợi ý có 1 nghiệm=2)
b) x^3+7x^2+14x+8 (gợi ý có 1 nghiệm=-1)
Lời giải:
a. $x^3-4x^2+x+6=(x^3-2x^2)-(2x^2-4x)-(3x-6)$
$=x^2(x-2)-2x(x-2)-3(x-2)=(x-2)(x^2-2x-3)$
$=(x-2)[(x^2+x)-(3x+3)]=(x-2)[x(x+1)-3(x+1)]$
$=(x-2)(x+1)(x-3)$
-------------------
b.
$x^3+7x^2+14x+8=(x^3+x^2)+(6x^2+6x)+(8x+8)$
$=x^2(x+1)+6x(x+1)+8(x+1)=(x+1)(x^2+6x+8)$
$=(x+1)[(x^2+2x)+(4x+8)]=(x+1)[x(x+2)+4(x+2)]$
$=(x+1)(x+2)(x+4)$
Phân tích đa thức thành nhân tử (bậc cao)
a) x^3-4x^2+x-6 (gợi ý có 1 nghiệm=2)
b) x^3+7x^2+14x+8 (gợi ý có 1 nghiệm=-1)
Câu a bạn xem lại đề bài nhé. Đa thức đề cho thậm chí còn không có nghiệm hữu tỉ luôn cơ.
b) Lập sơ đồ Horner:
1 | 7 | 14 | 8 | |
\(x=-1\) | 1 | 6 | 8 | 0 |
\(\Rightarrow x^3+7x^2+14x+8=\left(x+1\right)\left(x^2+6x+8\right)\)
Ta thấy đa thức \(g\left(x\right)=x^2+6x+8\), dự đoán được 1 nghiệm \(x=-2\). Ta lại lập sơ đồ Horner:
1 | 6 | 8 | |
\(x=-2\) | 1 | 4 | 0 |
\(\Rightarrow g\left(x\right)=\left(x+2\right)\left(x+4\right)\)
Vậy đa thức đã cho có thể được phân tích thành \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
1) Phân tích đa thức thành nhân tử ( = cách nhẩm nghiệm và hệ số bất định)
a) x^4+6x^3+11x^2+6x+1
b)x^4+7x^3+14x^2+14x+4
c)x^4-1ox^3-15x^2+20x+4
2)phân tích đa thức thành nhân tử( = cách hệ số bất định)
a) x^4-8x^3+11x^2+8x+12
b) x^4+x^2+1
c)x^4+4
1.Phân tích đa thức thành nhân tử
a)5x^3+10xy b)x^2+14x+49-y^2
2.Tìm số dư của phép chia đa thức A(x)=x^2019+x^2020+x^2021+2021 cho đa thức B(x)=x+1
Bài 1:
a: \(5x^3+10xy=5x\left(x^2+2y\right)\)
b: \(x^2+14x+49-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7+y\right)\left(x+7-y\right)\)