Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thành đạt
Xem chi tiết
Võ Thiên Hương
Xem chi tiết
Nguyễn Minh Quang
23 tháng 8 2021 lúc 12:14

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

Khách vãng lai đã xóa
Hồ Quốc Khánh
Xem chi tiết
Minh Triều
2 tháng 2 2016 lúc 9:09

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối

 

Phan thu trang
Xem chi tiết
Lightning Farron
19 tháng 2 2017 lúc 22:57

Đk: \(x\ge2;y\ge-1;0< x+y\le9\)

Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)

Từ giả thiết suy ra

\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)

Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:

\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)

\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)

Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)

Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

NGUUYỄN NGỌC MINH
Xem chi tiết
tranbem
Xem chi tiết
Nguyễn Thị Anh
1 tháng 8 2016 lúc 22:27

áp dụng tính chất |A|+|B|>+|A+B|

y=|x-2|+|1-x|\(\ge\)|x-2+1-x|=|-1|=1

vậy gtri nhỏ nhất y=1 khi (x-2)(1-x)\(\ge0\)

<=> \(-1\le2\)

các câu sau tương tự nha

Diệu Ngọc
Xem chi tiết
Akai Haruma
6 tháng 8 2021 lúc 18:32

1.

\(y=\sqrt{5-2\cos ^2x\sin ^2x}=\sqrt{5-\frac{1}{2}(2\cos x\sin x)^2}=\sqrt{5-\frac{1}{2}\sin ^22x}\)

Dễ thấy:

$\sin ^22x\geq 0\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\leq \sqrt{5}$

Vậy $y_{\max}=\sqrt{5}$

$\sin ^22x\leq 1\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\geq \sqrt{5-\frac{1}{2}}=\frac{3\sqrt{2}}{2}$

Vậy $y_{\min}=\frac{3\sqrt{2}}{2}$

Akai Haruma
6 tháng 8 2021 lúc 18:33

2.

$y=1+\frac{1}{2}\sin 2x\cos 2x=1+\frac{1}{4}.2\sin 2x\cos 2x$

$=1+\frac{1}{4}\sin 4x$

Vì $-1\leq \sin 4x\leq 1$

$\Rightarrow \frac{5}{4}\leq 1+\frac{1}{4}\sin 4x\leq \frac{3}{4}$

$\Leftrightarrow \frac{5}{4}\leq y\leq \frac{3}{4}$
Vậy $y_{\max}=\frac{5}{4}; y_{\min}=\frac{3}{4}$

Akai Haruma
6 tháng 8 2021 lúc 18:34

3.

$\sin x\geq -1\Rightarrow \sqrt{1+\sin x}\geq 0$

$\Rightarrow y\geq -3$

Vậy $y_{\min}=-3$

$\sin x\leq 1\Rightarrow \sqrt{1+\sin x}\leq \sqrt{2}$

$\Rightarrow y\leq \sqrt{2}-3$
Vậy $y_{\max}=\sqrt{2}-3$

 

Không Tên
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết