Tìm các giá trị của x,y thỏa mãn:|2x-27|^2011+(3y+10)^2012=0
Tìm các giá trị của x, y thỏa mãn: |2x - 27|2011 + (3y + 10)2012 = 0
Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)
⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)
Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy ...
Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm
ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0
(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0
=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10
=>x=13,5 hoặc x=-10/3
vậy .............................
\(\left|2x+27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\forall x;y\)
Dấu ''='' xảy ra \(x=\frac{27}{2};y=-\frac{10}{3}\)
tìm các giá trị của x, y thỏa mãn: |2x-27|^2011+(3y+10)^2012=0
Tìm các giá trị của x, y thỏa mãn: |2x-27|2011+(3y+10)2012=0
Giải:Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}}\)\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
Kết hợp với giả thiết ta thấy \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\) nên:
\(\hept{\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vậy x=\(\frac{27}{2}\);y=\(-\frac{10}{3}\) thỏa mãn bài toán
Tìm các giá trị của x, y thỏa mãn: |2x - 27|2011 + (3y + 10)2012 = 0
Tìm các giá trị của x, y thỏa mãn :
| 2x - 27 |2011 + ( 3y + 10 )2012=0
Ta thấy \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\)với mọi x
\(\left(3y+10\right)^{2012}\ge0\)với mọi y
Suy ra \( \left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)với mọi x,y
Mà \( \left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Khi đó \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy.....
Ta có : \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0}\)
Mà \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=27\\3y=-10\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)
và
+)
+)
Vậy
Tìm các giá trị x,y thỏa mãn:|2x - 27|^2011+(3y+10)^2012=0
ai nhanh cho 3 tk
Vì
|2x - 27|2011 ≥ 0
(3y + 10)2012 ≥ 0
=> |2x - 27|2011 + (3y + 10)2012 ≥ 0
Dấu "=" xảy ra <=> |2x - 27|2011 = 0 và (3y + 10)2012 =0
<=> 2x - 27 = 0 và 3y + 10 = 0
=> x = 27/2 và y = - 10/3
Tìm các giá trị x,y thỏa mãn : / 2x-27 / \(^{2011}\) + ( 3y + 10 ) \(^{2012}\) = 0
|2x - 27|2011 + (3y + 10)2012 = 0
\(\Rightarrow\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}\)
\(\Rightarrow\begin{cases}\left|2x-27\right|=0\\3y+10=0\end{cases}\)
\(\Rightarrow\begin{cases}2x-27=0\\3y+10=0\end{cases}\)
\(\Rightarrow\begin{cases}2x=0+27=27\\3y=0-10=-10\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}\)
Tìm giá trị x, y thỏa mãn: \(^{\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0}\)
Vì \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\); \(\left(3y+10\right)^{2012}\ge0\)
=>\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
Dấu "=" xảy ra khi \(\left|2x-27\right|^{2011}=\left(3y+10\right)^{2012}=0\Leftrightarrow\hept{\begin{cases}\left|2x-27\right|=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Tìm các giá trị của x, y thỏa mãn: |2x - 27|2011 + (3y + 10)2012 = 0
Mọi người giúp e với ạ
1 h đêm nay e phải nộp r ạ !
Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)
⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)
Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy ...