Sửa lại:
\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Rightarrow\left|2x-27\right|^{2011}=0\) và \(\left(3y+10\right)^{2012}=0\)
+) \(\left|2x-27\right|^{2011}=0\)
\(\Rightarrow\left|2x-27\right|=0\)
\(\Rightarrow2x-27=0\)
\(\Rightarrow2x=27\)
\(\Rightarrow x=13,5\)
+) \(\left(3y+10\right)^{2012}=0\)
\(\Rightarrow3y+10=0\)
\(\Rightarrow3y=-10\)
\(\Rightarrow y=\frac{-10}{3}\)
Vậy \(x=13,5;y=\frac{-10}{3}\)
Ta có:
\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Rightarrow\left|2x-27\right|^{2011}=0\) và \(\left(2y+10\right)^{2012}=0\)
+) \(\left|2x-27\right|^{2011}=0\)
\(\Rightarrow\left|2x-27\right|=0\)
\(\Rightarrow2x-27=0\)
\(\Rightarrow2x=27\)
\(\Rightarrow x=13,5\)
+) \(\left(2y+10\right)^{2012}=0\)
\(\Rightarrow2y+10=0\)
\(\Rightarrow2y=-10\)
\(\Rightarrow y=-5\)
Vậy \(x=13,5;y=-5\)