Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long Gai Thiên
Xem chi tiết
Huỳnh Kim Ngân
3 tháng 4 2022 lúc 16:44

bạn tham khảo link này nha:https://hoc24.vn/hoi-dap/tim-kiem?id=137279&q=Ch%E1%BB%A9ng%20minh%20%3A%20trong%20m%E1%BB%99t%20tam%20gi%C3%A1c%20c%C3%A2n%2C%20%C4%91%C6%B0%E1%BB%9Dng%20ph%C3%A2n%20gi%C3%A1c%20xu%E1%BA%A5t%20ph%C3%A1t%20t%E1%BB%AB%20%C4%91%E1%BB%89nh%20%C4%91%E1%BB%93ng%20th%E1%BB%9Di%20l%C3%A0%20%C4%91%C6%B0%E1%BB%9Dng%20trung%20tuy%E1%BA%BFn%20%E1%BB%A9ng%20v%E1%BB%9Bi%20c%E1%BA%A1nh%20%C4%91%C3%A1y.

Nguyen Thi Xuan
Xem chi tiết
Ngọc Hà Nguyễn
Xem chi tiết
nguyễn thị kim ngân
Xem chi tiết
Thanh Tùng DZ
1 tháng 5 2018 lúc 21:24

A B C M

Giả sử \(\Delta ABC\)cân tại A có AM là trung tuyến .

Xét \(\Delta AMB\)và \(\Delta AMC\)có :

AB = AC ( gt )

AM ( cạnh chung )

BM = CM ( gt )

Suy ra : \(\Delta AMB\)\(\Delta AMC\)( c.c.c )

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)

Từ đó suy ra ; AM là tia phân giác của \(\Delta ABC\)

GOODBYE!
Xem chi tiết
nguyễn phạm khánh linh
17 tháng 4 2019 lúc 19:45

Để học tốt Toán 7 | Giải toán lớp 7

​Xét tam giác ABC có AI là đường trung trực vừa là đường phân giác

vì AI là đường trung trực nên AI vuông góc với BC và I là trung điểm cuả BC

xét 2 tam giác vuông ABI và tam giác vuông ACI có;

IA chung

góc BAI=gócCAI (do AI là phân giác)

do đó tam giác BAI =tam giác CAI

suy ra AB=AC (2 cạnh tương ứng)

suy ra tam giác ABC cân tại A (định nghĩa tam giác cân)

Lê Ngọc Minh
Xem chi tiết
long bui
27 tháng 4 2017 lúc 13:17

có nhé !

J
27 tháng 4 2017 lúc 13:18

Có, đồng thời cũng là đường cao, đường trung tuyến nữa

Phương Thảo Nguyễn
Xem chi tiết
ánh tuyết
Xem chi tiết
Nguyễn Tuấn Minh
4 tháng 4 2017 lúc 20:08

a,b,c,d đều đúng

Mình nghĩ vậy

Trương Phú Nhuận
4 tháng 4 2017 lúc 20:18

Đáp án là A,B,C,D

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
19 tháng 9 2023 lúc 15:48

a) Kẻ đường trung trực của đoạn thẳng BC, cắt BC tại D

Ta có: Tam giác ABC cân nên AB = AC

\( \Rightarrow A\)thuộc đường trung trực của cạnh BC (t/c)

\( \Rightarrow AD\)là đường trung trực của BC.

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

AB = AC (gt)

BD = CD (gt)

AD: cạnh chung

\( \Rightarrow \Delta ABD = \Delta ACD\left( {c - c - c} \right)\)

\( \Rightarrow \widehat {BAD} = \widehat {CAD}\)

\( \Rightarrow \)AD là tia phân giác góc BAC.

Vậy tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.

b)

Ta có: Điểm cách đều ba đỉnh của tam giác là giao điểm ba đường trung trực của tam giác đó.

Tam giác ABC đều nên AB = BC = CA

Tam giác ABC cân tại A có AN là đường trung tuyến

\( \Rightarrow \) AN là đường phân giác xuất phát từ đỉnh A (cm ở ý a)

Tương tự: BP, CM lần lượt là đường phân giác xuất phát từ B và C của tam giác ABC

Mà AN cắt BP tại G

\( \Rightarrow G\) là giao điểm ba đường phân giác của tam giác ABC

\( \Rightarrow G\) cách đều ba cạnh của tam giác ABC (Tính chất