tính
\(\left(-1\right)^{8^2}+1^{2^8}\)
Tính \(F=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)
Tính \(G=\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)-\frac{2^{24}}{7}\)
a) Ta có F = \(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)
=> 8F = \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)
=> 8F = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)
=> 8F = \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)
=> 8F = \(\left(3^8-1\right)\left(3^8+1\right)-3^{16}=3^{16}-1-3^{16}=-1\)
=> F = -1/8
b) Ta có G = \(\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)-\frac{2^{24}}{7}\)
=> 7G = 7(23 + 1)(26 + 1)(212 + 1) - 224
=> 7G = (23 - 1)(23 + 1)(26 + 1)(212 + 1) - 224
=> 7G = (26 - 1)(26 + 1)(212 + 1) - 224
=> 7G = (212 - 1)(212 + 1) - 224
=> 7G = 224 - 1 - 224
=> 7G = -1
=> G = -1/7
\(F=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)
<=> \(\left(3^2-1\right)F=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\left(3^2-1\right)\frac{3^{16}}{8}\)
<=> \(8F=\left(3^4-1\right)\left(3^4+1\right)\left(3^8-1\right)-3^{16}\)
<=> \(8F=\left(3^8+1\right)\left(3^8-1\right)-3^{16}\)
<=> \(8F=\left(3^{16}-1\right)-3^{16}=-1\)
<=> F = -1/8
Câu G làm tương tự
nhân hết ra rồi tính
Thực hiện các phép tính (tính nhanh nhất nếu có thể):
\(A,\)\(2^2.5-\left(1^{10}+8\right):3^2\)
\(B, 5^8:5^6+4.(3^2-1)\)
\(C,\)\(400-\left\{36-20:\left[3^3-\left(8-3\right)\right]\right\}\)
a: \(2^2\cdot5-\dfrac{\left(1^{10}+8\right)}{3^2}\)
\(=4\cdot5-\dfrac{1+8}{3}\)
=20-3
=17
b: \(5^8:5^6+4\left(3^2-1\right)\)
\(=5^2+4\left(9-1\right)\)
=25+4*8
=25+32
=57
c: \(400-\left\{36-20:\left[3^3-\left(8-3\right)\right]\right\}\)
\(=400-36+20:\left[27-5\right]\)
\(=364+\dfrac{20}{22}\)
\(=364+\dfrac{10}{11}=\dfrac{4014}{11}\)
A) 2².5 - (1¹⁰ + 8) : 3²
= 4.5 - (1 + 8) : 9
= 20 - 9 : 9
= 20 - 1
= 19
B) 5⁸ : 5⁶ + 4.(3² - 1)
= 5² + 4.(9 - 1)
= 25 + 4.8
= 25 + 32
= 57
C) 400 - {36 - 20 : [3³ - (8 - 3)]}
= 400 - [36 - 20 : (27 - 5)]
= 400 -(36 - 20 : 22)
= 400 - (36 - 10/11)
= 400 - 386/11
= 4014/11
Tính
A=\(16^8-1\)
\(\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right)\)
\(A=16^8-1=2^{32}-1\)
\(\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right)=\left(2.2^2.2^4.2^8.2^{16}\right).\left(1+1+1+1+1\right)=\left(2^{31}\right).5\)
tính nhanh
a)\(\left(8^{2019}-8^{2018}\right):\left(8^{2016}.8^2\right)\)
b)\(\left(1^2+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+3^4\right).\left(3^8-81^2\right)\)
a) \(\left(8^{2019}-8^{2018}\right):\left(8^{2016}.8^2\right)\)
\(=8^{2018}\left(8-1\right):8^{2016+2}\)
\(=8^{2018}.7:8^{2018}=7\)
b) Em tham khảo link : Câu hỏi của ✽❤Girl cute❤✽ - Toán lớp 6 - Học toán với OnlineMath
tính nhanh:
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^{16}-1\right)\left(2^{16}+1\right)\\ =2^{32}-1 \)
Tính giá trị của biểu thức sau:
B=\(\left(-1\dfrac{1}{6}\right):\left(-3\dfrac{1}{3}+2\dfrac{1}{4}\right)-\left(-\dfrac{3}{8}\right):\left(8-6\dfrac{3}{8}\right)\)
B = \(\left(-1\dfrac{1}{6}\right)\) : \(\left(\dfrac{-10}{3}+\dfrac{9}{4}\right)\) - \(\left(-\dfrac{3}{8}\right)\) : \(\left(8-\dfrac{51}{8}\right)\)
B = \(\dfrac{-7}{6}\) : \(\dfrac{-13}{12}\) - \(\left(-\dfrac{3}{8}\right)\) : \(\dfrac{13}{8}\)
B = \(\dfrac{14}{13}\) - \(\dfrac{-3}{13}\)
B = \(\dfrac{17}{13}\)
\(\frac{\left(\frac{-1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^8-\frac{3}{8}}\)tính giá trị
Tính B=\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{1006}+1\right)+1\)
Sửa đề
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{1024}+1\right)+1\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{1024}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{1024}+1\right)+1\)
\(..................................................\)
\(=\left(2^{1024}-1\right)\left(2^{1024}+1\right)+1\)
\(=2^{2048}-1+1=2^{2048}\)
Tính \(C=\left(2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
Phải là (2+1)(2²+1)(2⁴+1)...(2³²+1)- 2^64
(2+1)(2²+1)(2⁴+1)...(2³²+1)
=(2-1)(2+1)(2²+1)(2⁴+1)...(2³²+1)
=(2²-1)(2²+1)(2⁴+1)...(2³²+1)
=(2⁴-1)(2⁴+1)...(2³²+1)=…=2^64-1
Vậy C=-1
Tính
\(\left(-2\right)^2.3-\left(1^{10}+8\right):\left(-3\right)^2\)
Ta có: \(\left(-2\right)^2\cdot3-\left(1^{10}+8\right):\left(-3\right)^2\)
\(=4\cdot3-\dfrac{9}{9}\)
=12-1=11
\(\left(-2\right)^2.3-\left(1^{10}+8\right):\left(-3\right)^2\)
\(=4.3-9:9\)
\(=12-1=11\)
(-2)2.3 - (110 + 8) : ( -3)2
= 4.3 - ( 1 + 8) : 9
= 12 - 9 : 9
= 12 -1
= 11