Cho \(B=\frac{x+5}{x-2}\). Tìm x nguyên để B nguyên
Bài ra: Cho B = \(\frac{x-2}{x-5}\)
A) Tìm các số nguyên x để B là phân số.
B) Tìm các số nguyên x để B là số nguyên.
C)Tìm số nguyên x để B=\(\frac{1}{2}\)
Bài làm:
A) Để biểu thức B là phân số <=> x+5 khác 0 và x khác -5. Vậy với x+5 khác -5 thì biểu thức B là phân số.
B) Để biểu thức B là số nguyên <=>x+5 khác 0
Ta có: x-2=[(x+5)-7] chia hết cho x+5
=> 7 chia hết cho x + 5 hoặc x+5 thuộc Ư(7)={ -7; -1; 1; 7 }
Ta có bảng:
x +5 | -7 | -1 | 1 | 7 |
x | -12 | -6 | -4 | 2 |
Vậy với x thuộc cá gia trị như -2; -6; -4; 2
C) Với x khác -5 thì B=\(\frac{1}{2}\) <=>\(\frac{x-2}{x+5}\)=\(\frac{1}{2}\)
Suy ra: 2(x-2)=1(x+5)
2x-4 = x+5
2x-x = 5+4
x = 9
Vậy x=9 thì B=\(\frac{1}{2}\)
a,Để B là phân số thì x \(\in\) Z,x khác 5
b,Để B số nguyên thì x -2 chi hết cho x-5
\(\Leftrightarrow\) (x-5)+3 chia hết cho x-5
mà x-5 chia hết cho x-5 \(\Rightarrow\) 3 chia hết cho x-5\(\Rightarrow\) x-5 \(\in\)Ư(3)={-3;-1;1;3}
Sau đó thay các giá trị đó vào x ở biểu thức x-5 mà giải
c,Theo bài ra ,ta có:\(\frac{x-2}{x-5}\)=\(\frac{1}{2}\)
\(\Leftrightarrow\) 2(x-2)=1(x-5)
2x-4=x-5
2x-x=-5+4
x=-1
Vậy x=-1 thì B=\(\frac{1}{2}\)
Cho M = \(\frac{5-x}{x-2}\)
a, Tìm x nguyên để M nguyên
b, Tìm x nguyên để M nhỏ nhất
\(\frac{5-x}{x-2}\)=\(\frac{-\left(x-2\right)+3}{x-2}\)=-1 +\(\frac{3}{x-2}\)
đề M nguyên thì x-2 là ước của 3
x-2=1 => x=3
x-2=-1 => x=-1
x-2=3 => x=5
x-2=-3 => x=-1
b. để M đạt giá trị nhỏ nhất khi x- là số nguyên âm lơn nhất
x-2=-1
x=1
\(Cho-A=\frac{3x+2}{x-3}\\ B=\frac{x^2+3x-7}{x+3}\)
a) Tình A khi \(x=1;x=2;x=\frac{5}{2}\)
bTìm x Z để A là số nguyên.
c) Tìm x Z để B là số nguyên.
d) Tìm x Z để A và B cùng là số nguyên.
Cho A=\(\frac{x-2}{x+5}\)
a/ Tìm số nguyên x để A là một phân số
b/ Tìm số nguyên x để A là số nguyên
a , Ta có
\(x\in Z\Rightarrow x-2\in Z\Rightarrow x+5\in Z\)
Để A là phân số thì \(x+5\ne0\)
\(\Rightarrow x\ne-5\)
Vậy \(x\ne-5\) thì A là phân số
b , Để A là số nguyên thì \(x-2⋮x+5\)
\(x+5-7⋮x+5\)
Mà \(x+5⋮x+5\)
\(\Rightarrow-7⋮x+5\)
\(\Rightarrow x+5\inƯ\left(7\right)\)
\(\Rightarrow x+5\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-4;-6;2;-12\right\}\)
a,A là một phân số khi x+5 khác 0 khi x khác 0-5 khi x khác -5
b, A là số nguyên khi và chỉ khi : x-2 chia hết cho x+5
=>x+5-2+5 chia hết cho x+5
=>x+5+3 chia hết cho x+5
=>3 chia hết cho x-5
bạn tự làm tiếp nhé!
Cho biểu thức: B=\(\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
a)Chứng minh B=\(\frac{x^2+x+1}{x-2}\)
b)Tính giá trị B biết (x+5)2-9x-45=0
c)Tìm x nguyên để B nhận gtri nguyên
d) Tìm x để B=\(\frac{-3}{4}\)
e)tÌM x để B<0
f) Tìm GTLN của M biết M=\(\frac{2}{x-2}:B\)
g) Với x>2 tìm GTNN của B
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)
bạn ơi đề bài có sai không :)) sao mình với Tú ra cùng 1 kết quả mà đề bài cho khác vậy :v xem lại đề bài đi bạn
g) \(B=\frac{x^2+x+1}{x-2}=\frac{x^2-2x+3x-6+7}{x-2}=\frac{x\left(x-2\right)+3\left(x-2\right)+7}{x-2}=x+3+\frac{7}{x-2}\)
\(=\left[\left(x-2\right)+\frac{7}{x-2}\right]+5\)
Vì x > 2, áp dụng bất đẳng thức AM-GM ta có :
\(\left(x-2\right)+\frac{7}{x-2}\ge2\sqrt{\left(x-2\right)\cdot\frac{7}{x-2}}=2\sqrt{7}\)
=> \(\left[\left(x-2\right)+\frac{7}{x-2}\right]+5\ge2\sqrt{7}+5\)
Đẳng thức xảy ra <=> ( x - 2 ) = 7/(x-2) [ bạn tự giải nốt ]
Vậy ...
Cho biểu thức: \(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{10x-25}{x^2-5x}+\frac{x}{5-x}\)
a)Rút gọn
b)Tìm x để P=2008
c) Tìm gt nguyên của x để P nhận gt nguyên
Cho A = \(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\) B = \(\frac{2x-5}{x^2+5x}+\frac{x+3}{5-x}\)
a) Tìm ĐKXĐ của A, B
b) Tính P = A : B
c) Tính giá trị của P khi x = 0 và x = 4
d) Tìm x nguyên để P nguyên
\(a,\)\(đkxđ\)của \(A\)\(:\)\(\hept{\begin{cases}x^2-25\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)\left(x+5\right)\ne0\\x\left(x+5\right)\ne0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x\ne\pm5\\x\ne0\end{cases}}\)
\(đkxđ\)của \(B\)\(:\)\(\hept{\begin{cases}x^2+5x\ne0\\5-x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+5\right)\ne0\\5-x\ne0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x\ne\pm5\\x\ne0\end{cases}}\)
\(b,\)\(A=\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}=\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\)
\(=\frac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}=\frac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}\)\(=\frac{10x-25}{x\left(x+5\right)\left(x-5\right)}\)
\(B=\frac{2x-5}{x^2+5x}+\frac{x+3}{5-x}=\frac{2x-5}{x\left(x+5\right)}-\frac{x+3}{x-5}\)
\(=\frac{\left(2x-5\right)\left(x+5\right)-\left(x-3\right)\left(x^2+5x\right)}{x\left(x-5\right)\left(x+5\right)}\)
\(=\frac{2x^2+5x-25-x^3-2x^2+15x}{x\left(x-5\right)\left(x+5\right)}\)
\(=\frac{-x^3+20x-25}{x\left(x-5\right)\left(x+5\right)}\)
\(\Rightarrow P=A:B=\frac{10x-25}{x\left(x+5\right)\left(x-5\right)}:\frac{x^3+20x-25}{x\left(x+5\right)\left(x-5\right)}\)
\(=\frac{10x-25}{x^3+20x-25}\)
Đề có vấn đề ko vậy babe -.- \(x^3+20x-25\)vẫn phân tích được, nhưng ko rút gọn được -.-
Lí do mk ko lm đc là ở chỗ đó đó
Cho
\(A=\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)
a) rút gọn A
b) tìm x nguyên để A nguyên
Cho biểu thức B = \((\frac{1}{\sqrt{x}}-\frac{2}{\sqrt{x}+2}).\frac{x-\sqrt{x}}{\sqrt{x}-1}\)
a/ Tìm x để B có nghĩa.
b/ Rút gọn B.
c/ Tìm x để B > 0.
d/ Tìm x nguyên để B nhận giá trị nguyên.