Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trà My
Xem chi tiết
Trần Minh Hoàng
10 tháng 1 2021 lúc 11:59

Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).

Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).

Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.

ღŇεʋεɾ_ɮε_Ąℓøŋεღ
10 tháng 1 2021 lúc 11:44

Không chia có mà làm=niềm tin ah

 

Họ Và Tên
Xem chi tiết
nguyễn thị thanh thùy ng...
Xem chi tiết
Nguyễn Trọng Kiên
29 tháng 10 2016 lúc 15:40

dễ mà bạn.ban chỉ cần ad tc dãy tỉ số bàng nhau là được

\(\frac{x1-1}{9}=...=\frac{x9-9}{1}=\frac{x1-1+...+x9-9}{9+...+1}\)sau đó thay x1+...+x9 vào la ok

nguyễn thị thanh thùy ng...
29 tháng 10 2016 lúc 15:46

loại ócc như mày ế ,làm như z mà dk à ,sai hết cmnr

hoanganh nguyenthi
8 tháng 10 2017 lúc 18:56

nguyễn thị thanh quỳnh ngốk mày sai thì có ,ng ta đã giúp rồi lại con chửi

Phạm Hữu Dũng
Xem chi tiết
Lê Xuân Thái
Xem chi tiết
Nguyen Thi Bich Ngoc
Xem chi tiết
Đinh Đức Hùng
22 tháng 8 2017 lúc 13:25

Đặt \(\frac{x_1-1}{9}=\frac{x_2-2}{8}=.....=\frac{x_8-8}{2}=\frac{x_9-9}{1}=k\)

Áp dụng TC DTSBN ta có :

\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+...+\left(x_8-8\right)+\left(x_9-9\right)}{9+8+....+2+1}\)

\(=\frac{\left(x_1+x_2+....+x_9\right)-\left(1+2+....+8+9\right)}{1+2+3+...+8+9}=\frac{900-45}{45}=19\)

\(\Rightarrow\frac{x_1-1}{9}=\frac{x_2-2}{8}=.....=\frac{x_8-8}{2}=\frac{x_9-9}{1}=19\)

\(\Rightarrow x_1=172;x_2=154;x_3=136;x_4=118;x_5=100;x_6=82;x_7=64;x_8=46;x_9=18\)

Huỳnh Quang Sang
18 tháng 8 2019 lúc 20:04

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x_1-1}{9}=\frac{x_2-2}{8}=...=\frac{x_9-9}{1}=\frac{x_1-1+x_2-2+...+x_9-9}{9+8+...+1}\)

\(=\frac{\left[x_1+x_2+...+x_9\right]-\left[1+2+3+...+9\right]}{9+8+...+1}=\frac{900-45}{45}=19\)

Ta có : \(\frac{x_1-1}{9}=19\)=> \(x_1-1=171\)=> \(x_1=172\)

Từ đó ta tìm được : x2 = 154 , x3 = 136 , x4 = 118 , x5 = 100 , ...

Đến đây tìm được các x còn lại

Nguyễn Như Quỳnh
Xem chi tiết
meme
23 tháng 8 2023 lúc 20:04

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

Luyện Thị Minh Phượng
Xem chi tiết
Nguyễn Nam Khánh
14 tháng 12 2018 lúc 21:57

chưa chắc bn ơi

quanphampro
Xem chi tiết