\(\frac{^{a^n}}{c^n}=\frac{a^n+b^n}{c^n+d^n}\)
CMR \(\frac{a}{b}=\frac{c}{d}\)
CMR: Nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)với n thuộc N.
Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n-b^n}{c^n-d^n}=\frac{a^n+b^n}{c^n+d^n}\left(đpcm\right)\)
cho\(\frac{a}{b}=\frac{c}{d}\) CMR\(\left(\frac{a}{c}\right)^n=\frac{a^n+b^n}{c^n+d^n}\)
a/b = c/d => a/c=b/d
Đặt a/c=b/d = k
=> a=ck ; b=dk
Khi đó : (a/c)n = kn
an+bn/cn+dn = cnkn+dnkn/cn+dn = kn.(cn+dn)/cn+dn = k^n
=> (a/c)n = an+bn/cn+dn
=> ĐPCM
k mk nha
1. Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr:
a,\(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-b^n}\) ( \(n\in R\))
b, \(\frac{a}{a+b}=\frac{c}{c+d}\)
1. Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr:
a,\(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-b^n}\) ( \(n\in R\))
b, \(\frac{a}{a+b}=\frac{c}{c+d}\)
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{\left(bk\right)^n+b^n}{\left(dk\right)^n+d^n}=\frac{\left(bk\right)^n-b^n}{\left(dk\right)^n-d^n}\)\(=\frac{b^nk^n+b^n}{d^nk^n+d^n}=\frac{b^nk^n-b^n}{d^nk^n-d^n}\)
Xét VT \(\frac{a^n+b^n}{c^n+d^n}=\frac{b^nk^n+b^n}{d^nk^n+d^n}=\frac{b^n\left(k^n+1\right)}{d^n\left(k^n+1\right)}=\frac{b^n}{d^n}\left(1\right)\)
Xét VP \(\frac{a^n-b^n}{c^n-d^n}=\frac{b^nk^n-b^n}{d^nk^n-d^n}=\frac{b^n\left(k^n-1\right)}{d^n\left(k^n-1\right)}=\frac{b^n}{d^n}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
b)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{bk}{bk+b}=\frac{dk}{dk+d}\)
Xét VT \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\left(1\right)\)
Xét VP \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
1. Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr:
a,\(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-b^n}\) ( \(n\in R\))
b, \(\frac{a}{a+b}=\frac{c}{c+d}\)
a) Ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)
b) Ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Leftrightarrow\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
1) Cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\)CMR \(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)
Từ a/b=c/d suy ra a/c=b/d
ta có:
a/b=c/d=a+b/c+d=a-b/c-d
suy ra a^n+b^n/c^n+d^n=a^n-b^n/c^n-d^n (điều phải chứng minh)
Vậy: a^n+b^n/c^n+d^n=a^n-b^n/c^n-d^n
Cho:\(\frac{a}{b}\)\(=\frac{c}{d}\) và b+d khác 0. CMR:
a) \(\frac{a^{2015}+c^{2015}}{b^{2015}+d^{2015}}\)=\(\frac{\left(a+c\right)^{2015}}{\left(b+d\right)^{2015}}\)
b) \(\frac{a^n+c^n}{b^n+d^n}=\frac{\left(a+c\right)^n}{\left(b+d\right)^n}\)(n thuộc N*)
bài 1: từ \(\left(\frac{a}{c}\right)^n=\frac{a^n+b^n}{c^n+d^n}\)với n thuộc N suy ra : \(\frac{a}{b}=\frac{c}{d}\)nếu là số tự nhiên lẻ với \(\frac{a}{b}=\frac{c}{d}=\frac{-c}{d}\)nếu n là số tự nhiên chẵn
Cho a < b < c < d < m < n với a,b,c,d,m,n là các số nguyên dương.
CMR \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
a < b => 2a < a + b ; c < d => 2c < c + d ; m < n => 2m < m + n
Suy ra 2a + 2c + 2m = 2(a + c + m) < a + b + c + d + m + n. Do đó
\(\frac{a+c+m}{a+b+c+d+m+n}