Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Hà
Xem chi tiết
nguyễn em
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2023 lúc 10:09

a: 3x^3+2x^2-7x+a chia hêt cho 3x-1

=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1

=>a-2=0

=>a=2

c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4

=>3a+19=4

=>3a=-15

=>a=-5

d: 2x^3-x^2+ax+b chiahêt cho x^2-1

=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1

=>a+2=0 và b-1=0

=>a=-2 và b=1

Trần Khánh Hưng
Xem chi tiết
thanh vu
Xem chi tiết
Nhóc_Siêu Phàm
10 tháng 12 2017 lúc 22:10

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1

Ngô Linh
Xem chi tiết
nguyenvankhoi196a
15 tháng 11 2017 lúc 21:00

3x+7=28

3x    =28-7

3x     =21

  x    =21:3

 x      =7

Bảo Trân
Xem chi tiết
Nguyễn Thị Anh
8 tháng 8 2016 lúc 14:01

1.a) đặt f(x)= 2x3 - 3x2 + x + a chia hết cho x + 2

nên x=-2 thì f(x)=0

thay x=-2 ta được : -30+a=0

=> a=30 thì 2x- 3x+ x + a chia hết cho x + 2

 

Lightning Farron
8 tháng 8 2016 lúc 14:04

làm tính chia đi số dư chính là a cần tìm đấy

tran nguyen ngoc mai
Xem chi tiết
dũng lê
Xem chi tiết
Nguyễn Lan Anh
Xem chi tiết
Kiệt Nguyễn
1 tháng 3 2020 lúc 10:22

Câu 1:

a) \(\left(x^2+y^2-36\right)^2-4x^2y^2\)

\(=\left(x^2+y^2-36\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+y^2+2xy-36\right)\left(x^2+y^2-2xy-36\right)\)

\(=\left[\left(x+y\right)^2-36\right]\left[\left(x-y\right)^2-36\right]\)

\(=\left(x+y+6\right)\left(x+y-6\right)\left(x-y+6\right)\left(x-y-6\right)\)

b) \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x-2\right)\left(x+1\right)\)

Khách vãng lai đã xóa
Edogawa Conan
1 tháng 3 2020 lúc 10:22

1) a) (x2 + y2 - 36)2 - 4x2y2 

= (x2 + y2 - 36 - 2xy)(x2 + y2 - 36 + 2xy)

= [(x - y)2 - 36][(x + y)2 - 36]

= (x - y - 6)(x - y  + 6)(x + y + 6)(x + y - 6)

b) (x2 + x)2 - 5(x2 + x) + 6

= (x2 + x)2 - 2(x2 + x) - 3(x2 + x) + 6

= (x2  + x)(x2 + x - 2) - 3(x2 + x - 2)

= (x2 + x - 3)(x2 + 2x - x - 2)

=  (x2 + x - 3)(x - 1)(x + 2)

2) Đặt tính là đc

Khách vãng lai đã xóa
Kiệt Nguyễn
1 tháng 3 2020 lúc 10:25

Câu 2;

Áp dụng định lý Bezout,ta được:

a) \(f\left(-5\right)=2.\left(-5\right)^2-5.\left(-5\right)+a=0\)

\(\Leftrightarrow50+25+a=0\Leftrightarrow a=-75\)

b) \(f\left(-2\right)=3.\left(-2\right)^3-\left(-2\right)^2+a.\left(-2\right)-4=0\)

\(\Leftrightarrow-24-4-2a-4=0\Leftrightarrow a=-16\)

c) \(f\left(1\right)=a.1^4-4.1^3+3.1^2-2.1+5=0\)

\(\Leftrightarrow a-4+3-2+5=0\Leftrightarrow a=-2\)

Khách vãng lai đã xóa
Vương Thị Kim Chi
Xem chi tiết
Kiệt Nguyễn
8 tháng 11 2019 lúc 13:07

x^2+2x+2 x^4+x^3+ax^2+4x+6 x^2-x+a x^4+2x^3+2x^2 -x^3+(a-2)x^2+4x+6 -x^3-2x^2-2x ax^2+6x+6 ax^2+2ax+2a (6-2a)x+(6-2a)

Để đa thức \(x^4+x^3+ax^2+4a+6\) chia hết cho \(x^2+2x+2\)thì:

\(\left(6-2a\right)x+\left(6-2a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}6-2a=0\\6-2a=0\end{cases}}\Leftrightarrow a=3\)

Vậy a = 3 thì đa thức \(x^4+x^3+ax^2+4a+6\) chia hết cho \(x^2+2x+2\)

Khách vãng lai đã xóa