Tổng sau có chia hết cho 3 ko:
\(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
tổng sau có chia hết cho 3 ko ?
A= 2 +2^2 +2^3 + 2^4 +2^5 + 2^6 +2^7 +2^8 +2^9 +2^10
vì các mũ trên ko chia hết cho 3 nên tổng trên ko chia hết cho 3
A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ( 2^5 + 2^6 ) + ( 2^7 + 2^8 ) + ( 2^9 + 2^10 )
A = ( 2 . 1 + 2 . 2 ) + ( 2^3 .1 + 2^3 .2 ) + ( 2^5 . 1 + 2^5 . 2 ) + ( 2^7 . 1 + 2^7 . 2 ) + ( 2^9 . 1 + 2^9 . 2 )
A = 2( 1 + 2 ) + 2^3( 1 + 2 ) + 2^5( 1 + 2 ) + 2^7( 1 + 2 ) + 2^9( 1 + 2 )
A = 2.3 + 2^3.3 + 2^5.3 + 2^7.3 + 2^9.3
A = 3( 2 + 2^3 + 2^5 + 2^7 + 2^9 )
=> A chia hết cho 3
tổng sau có chia hết cho 3 ko
A = 2 + 2^2 + 2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10
A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10
=(2+2^2)+(2^3+2^4)+(2^5+2^6)+(2^7+2^8)+(2^9+2^10)
=2(1+2)+2^3(1+2)+2^5(1+2)+2^7(1+2)+2^9(1+2)
=(1+2)(2+2^3+2^5+2^7+2^9)
=3(2+2^3+2^5+2^7+2^9) chia hết cho 3
Tổng sau có chia hết cho 3 ko:
\(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
Tổng sau có chia hết cho 3 ko:
\(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+2^7\left(1+2\right)+2^9\left(1+2\right)\)
\(=3\left(2+2^3+2^5+2^7+2^9\right)⋮3\)
Tổng sau có chia hết cho 3 ko:
\(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
Ta có :
\(2+2^2+2^3+....+2^{10}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)
\(=2.3+2^3.3+....+2^9.3\)
=> Tổng chia hết cho 3
\(2+2^2+2^3+...+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=2.3+2^3.3+...+2^9.3\)
\(=\left(2+2^3+...+2^9\right).3⋮3\)
\(\Rightarrow2+2^2+2^3+...+2^{10}⋮3\)
Tổng sau có chia hết cho 3 ko:
\(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
Tổng sau có chia hết cho 3 ko:
\(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
ta thấy
\(2+2^2=4\\->2+2^2+...+2^{10}\) chia hết cho 3
Tổng sau có chia hết cho 3 ko?
A= 2+ 2^2 +2^3 + 2^4 + 2^5 + 2^7 + 2^7 + 2^8 + 2^9 + 2^10
Tổng sau có chia hết cho 3 không? A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10
Nguyễn Huy Hải ns chuyện vs gái "'hiền"' gê nhể !
A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+(2^7+2^8)+(2^9+2^10)
A=(2.1+2.2)+...+(2^9.1+2^9.2)
A=2.3+2^3.3+...+2^9.3
A=3.(2+2^3+...+2^9) chia hết cho 3
=> A chia hết cho 3
A => (2 + 22) + (23 + 24) +.... + (29 + 210)
A => 2.3 + 23.3 + .... + 29.3
A => 3.(2+23+25 + 27+29)
Vậy A có thể chia hết cho 3