CMR : Nếu a + 15b chia hết cho 11 thì 23a + 37b chia hết cho 11
Cho a, b thuộc Z. CMR:
a) Nếu 2a+ b chia hết cho 13 và 5a -4b chia hết cho 13. CMR a-6b chia hết cho 13.
b) Nếu a0b chia hết cho 7 thì a+4b chia hết cho 7.
c) Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11.
Các bạn giúp mk vs!!!
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
DK: a,b thuoc N, a > 0
\(\overline{a0b}=100a+b⋮7\)
\(\Rightarrow4.\left(100a+b\right)⋮7\)
\(\Rightarrow400a+4b⋮7\)
\(\Rightarrow a+4b⋮7\text{ vi }399a⋮7\)
\(\)
Ta co: \(3a+4b⋮11\Rightarrow7.\left(3a+4b\right)⋮11\)
\(\Rightarrow21a+28b⋮11\)
\(\text{ma }21a+28b+a+5b=22a+33b⋮11\)
\(\Rightarrow a+5b⋮11\text{ vi }21a+28b⋮11\)
CMR nếu ab chia hết cho 11 thì abcd chia hết cho 11
Không có đủ cơ sở để đưa ra kết luận này bạn nhé.
a)CMR nếu:(ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
b)CMR:1028+8 chia hết cho 72
Cho a, b thuộc N. CMR nếu 5a + 3b và 23a + 8b cùng chia hết cho 2012 thì a và b cũng chia hết cho 2012
công một lượng nào đó sau đó biến đổi là đc
5a+3b chia hết cho 2012 =>23(5a+3b) chia hết cho 2012 =>115a+69b chia hết cho 2012 (1)
23a+8b chia hết cho 2012 =>5(23a+8b) chia hết cho 2012 =>115a+40b chia hết cho 2012 (2)
Lấy (1)-(2) => 29b chia hết cho 2012
=>b chia hết cho 2012( vì (29;2012)=1)
Có b chia hết cho 2012 => 3b chia hết cho 2012 =>5a chia hết cho 2012 => a chia hết cho 2012 ( vì (5;2012)=1)
Vậy a và b đều chia hết cho 2012
2.Cho a,b thuộc Z. C/m: a + 4b chia hết cho 13 thì 10a + b chia hết cho 13 và ngược lại.
giải
bài này tớ có thể tìm được cả số a và b luôn cách làm như sau:
vì a+4b chia hết cho 13 và 10a+b chia hết cho 13 và ngược lại tức là:
13 chia hết cho 10a+b
vì 13 là số nguyên tố nên
10a+b=+-1 hoặc +- 13
TH1:10a+b=-1(TH này nhìn là thấy không đúng)
TH2:10a+b=1(TH này cả âm cả dương đều khó có thể)
TH3:10a+b=-13
a=-1 và b=-3
thử bằng cách a+4b=-1+4.(-3)=-13(TH này được)
TH4:10a+b=13
a=1;b=3
thử vẫn bằng cách đó.
vậy ta tìm được cũng như chứng minh được:
a=3;b=1
a=-1;b=-3
\Rightarrow ta cũng chứng minh được điều phải chứng minh.
CMR nếu (4a+9b) chia hết cho 11 thì (3a+4b) chia hết cho 11 với a,b thuộc N
cmr : nếu ( ab + cd + eg ) chia hết cho 11 thì abcdeg cũng chia hết cho 11
Ta có: abcdeg=10000ab+100+cd+eg
=(ab+cd+eg)(10000+101)
theo bài ra ta có ab+cd+eg chia hết cho 11=>(ab+cd+eg)(10000+101) chia hết cho 11 hay abcdeg chia hết cho 11(đpcm)
Vậy với ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11
CMR nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
ta có:
abcd=100.ab+cd=99.ab+ab+cd=99.ab+(ab+cd)
mà 99.ab=11.9.ab chia hết cho 11
ab+cd chia hết cho 11(theo đề)
=>99.ab+(ab+cd) chia hết cho 11
=>abcd chia hết cho 11(đpcm)
CMR nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11.
abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)
Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
CMR : Nếu (ab + cd + eg) chia hết cho 11 thì abcdeg chia hết cho 11
ab+cd+eg chia hết cho 11
Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11
=> 9999ab+99cd+ab+cd+eg chia hết cho 11
=> 10000ab+100cd+eg chia hết cho 11
=> ab0000+cd00+eg chia hết cho 11
=> abcdeg chia hết cho 11
=> ĐPCM
Tk mk nha
Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
Vậy...
abcdeg=10000ab+100cd+eg=9999ab+99cd+(ab+cd+eg)
Mà ab + cd + eg chia hết cho 11
Suy ra abcdeg chia hết cho 11 khi ab + cd + eg chia hết cho 11 ( do 9999ab+99cd chia hết cho 11)
Tk mình đi!