Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền Anh Lê
Xem chi tiết
Thanh bình Đinh
15 tháng 12 2019 lúc 19:41
https://i.imgur.com/LNrKKVX.jpg
Khách vãng lai đã xóa
ha thi phuong thao
Xem chi tiết
Karry Wang
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
25 tháng 8 2017 lúc 21:37

a) x3 + 127127 = x3  + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)

=(x + 1313)(x2 – 1313x + 1919)

b) (a + b)3 – (a - b)3    

= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]

= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)

= 2b . (3a3 + b2)

c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]

= (a + b + a – b)(a2 + 2ab + b2 – a2  +b+ a2 – 2ab + b2]

= 2a . (a2 + 3b2)

d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y  +3 . 2x . y + y3 = (2x + y)3

e) - x+ 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3

Nguyen Thi Kim Anh
Xem chi tiết
Nguyễn Mai Hữu Thiện
28 tháng 10 2018 lúc 19:59

=x^4+4x^2+4-4x^2 
=(x^2+2)^2-4x^2 
=(x^2+2-2x)(x^2+2+2x) 
Để x^4+4 chia hết cho x^2+ax+b thì 
(x^2-2x+2)(x^2+2x+2) chia hết cho x^2+ax+b

nguyễn trang
Xem chi tiết
Vua phá lưới
6 tháng 9 2018 lúc 21:44

khó lắm

사랑해 @nhunhope94
6 tháng 9 2018 lúc 21:46

hôm nay bọn mik vừa hok về chưa thấm đâu vô đâu nên kg giúp đc xin lỗi nhe!

nguyễn trang
6 tháng 9 2018 lúc 22:01

phan thi hong nhung k sao ạ?

Mai Thị Thanh xuân
Xem chi tiết
Nguyen Trieu Anh Linh
2 tháng 8 2017 lúc 20:27

hihi, mik chịu thua, bn tk cho mik nha

Mập Octiiu626 TM
2 tháng 8 2017 lúc 15:15

HIC....HIC. TÍCH MÌNH ĐI RỒI MÌNH CHAT RIÊNG ĐÁP ÁN CHO,

Quynh Tram
28 tháng 8 2018 lúc 19:22

hãy gửi câu trả lời đầy đủ và không nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
asuna x kirito
Xem chi tiết
Nguyễn Văn Khang
Xem chi tiết
Lương Ngọc Lan
Xem chi tiết
Le Thi Khanh Huyen
4 tháng 10 2016 lúc 17:15

a) Đặt \(f\left(x\right)=x^4+ax+b\text{⋮}x^2-4=\left(x+2\right)\left(x-2\right)\)

Áp dụng định lý Bê du có :

\(f\left(2\right)=f\left(-2\right)=0\)

\(\Rightarrow2^4+\left(-2\right).a+b=\left(-2\right)^4+2a+b\)

\(\Leftrightarrow a=0\)

Do đó \(\hept{\begin{cases}a=0\\b\in R\end{cases}}\)

Vậy ...

b) Mình không làm được :) Mình sẽ hỏi cô mình và trả lời cho bạn sau.

Hoàng Lê Bảo Ngọc
4 tháng 10 2016 lúc 17:38

a/ Đặt \(f\left(x\right)=x^4+ax+b=\left(x-2\right)\left(x+2\right).Q\left(x\right)\)với Q(x) là đa thức thương

Suy ra : \(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=16-2a+b=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2a+b=-16\\-2a+b=-16\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=-16\end{cases}}\)

b/ Ta có \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

Vậy \(x^2+ax+b\) sẽ có một trong hai dạng : \(x^2+ax+b=x^2+2x+2\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)

hoặc \(x^2+ax+b=x^2-2x+2\Rightarrow\hept{\begin{cases}a=-2\\b=2\end{cases}}\)