tim a la so tn sao cho 3a+5 chia het cho 9-2n
b1 tim so tu nhien lon nhat co 3 chu so biet rang chia cho 5; 7 ; 9 thi co so du lan luot la 2 ; 4 ;6
b2 tim x biet
a ) 2x +3 chia het cho x -1
b)3x+5 chia het cho x+1
b3 chung to rang 3n+4 va 4n +5 la 2 so nguyen to cung nhau vs moi so TN
Goi y
B1 X+3 chia het cho 5 7 9
B2 a ; Nhan x-1 vs 2 Roi tru cho nhau
b ; nhan x+1 vs 3
B3 nhan 3n +4 vs 4 ; 4n +5 vs3 roi tru
Tim so tu nhien n sao cho:
a) 4n-5 chia het cho 2n-1
b) 6n+9 chia het cho 3n+1
\(4n-5⋮2n-1\)
\(\Leftrightarrow4n-2-3⋮2n-1\)
\(\Leftrightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Leftrightarrow-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\text{Ư}\left(-3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2n\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow n\in\left\{-1;0;1;2\right\}\)
mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
\(6n+9⋮3n+1\)
\(\Leftrightarrow6n+2+7⋮3n+1\)
\(\Leftrightarrow2\left(3n+1\right)+7⋮3n+1\)
\(\Leftrightarrow7⋮3n+1\)
\(\Leftrightarrow3n+1\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow3n\in\left\{-8;-2;0;6\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{8}{3};-\frac{2}{3};0;2\right\}\)
mà \(n\in N\)
=> \(n\in\left\{0;2\right\}\)
bai;51tim so TN n sao cho
a)(n+2)chia het cho (n-1)
b)(2n+7) chia het cho (n+1)
c)(2n+1) chia het cho (6-n)
d)3n chia het cho ( 5-2n)
e)(4n+3) chia het cho (2n+6)
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
chịu thôi ! mình không biết ! nếu biết đã giúp rồi
TIM N LA SO NGUYEN SAO CHO
a , 3n +11 chia het cho n
b , 2n - 7 chia het cho n+ 2
c , n2 + 2n + 10 chia het cho n+ 1
a) 3n+11 chi hết cho n
mà 3n cũng chia hết cho n
=> 3n+11- 3n chia hết cho n
=> 11 chia hết cho n
=> n thuộc ước 11=> n thuộc { 1; -1; 11;-11}
khi chia so TN a cho 18 ta dc so du la 12. Hoi so a co chia het cho3 ko co chia het cho 9 ko?
có chia hết
a*q+r=a*18+12
ta thấy 18chia hết cho 9 nên a*18chia hết cho 9 và 12 k chia hết cho 9vậy achia hết cho 3 nhưng k chia hết cho 9
bai 1
a, chung to rang 2n+5/n+3, ( n thuoc N ) la phan so toi gian
b, tim gia tri nguyen cua n de B= 2n+5/n+3 co gia tri la so nguyen
bai 2
tim so tu nhien nho nhat sao khi chia cho 3 du 1 cho 4 du 2 cho 5 du 3 cho 6 du 4 va chia het cho 11
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
Tim so tu nhien n sao cho:
a)n+2 chia het cho n-1
b)2n+7 chia het cho n+1
c)2n+1 chia het cho 6-n
d)3n chia het cho 5-2n
e)4n +3 chia het cho 2n+6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
Cau 1:
- 2-(9-36)
Cau 2: tim cac so tu nhien n sao cho (2n+9) chia het cho (n+1)
Cau3:goi x la tong cac chu so cua so a =32010+2011, goi y la tong cac chu so cua so x va goi z la tong cac chu so cu y . tim z
Tim cac so nguyen n sao cho:
a, n-1 la uoc cua 15
b, 2n-1 chia het cho n-3
a)
Ta có:
(n-1)∈Ư(15)={±1;±3;±5;±15}
=>n∈{2;0;4;-2;6;-4;16;-14}
Vậy: n∈{2;0;4;-2;6;-4;16;-14}
b)
Ta có:
2n-1 chia hết cho n-3
=>2(n-3)+5 chia hết cho n-3
=> 5 chia hết cho n-3
=> (n-3)∈Ư(5)={±1;±5}
=>n∈{4;2;8;-2}
Vậy: n∈{4;2;8;-2}
a, n-1 \(\in\)Ư(15)
\(\Rightarrow\)n - 1 \(\in\){ 1; -1 ; 3 ; -3 ; 5 ; -5 ; 15 ; -15}
\(\Rightarrow\)n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
Vậy n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
b, 2n-1 \(⋮\)n - 3
( n -3 ) + ( n -3 ) + 5 \(⋮\)n - 3
Vì n - 3 \(⋮\)n - 3
nên 5 \(⋮\)n - 3
\(\Rightarrow\)n - 3 \(\in\){ 1; -1 ; 5 ; -5 }
\(\Rightarrow\)n \(\in\){ 4 ; 2 ; 8 ; -2 }
Vậy n \(\in\){ 4 ; 2 ; 8 ; -2 }
~ HOK TỐT ~