Giá trị x nhỏ nhất của: \(\left|2y+7,4\right|+6,2+\left|-x+2,1\right|\)
Giá trị nhỏ nhất của /2y+7,4/+6,2+/-x+2,1/ là
Giá trị nhỏ nhất của |2y + 7,4| +6,2+|-x+3,1|
De \(\left|2y+7,4\right|+6,2+\left|-x+3,1\right|\) dat GTNN thi
\(\left|2y+7,4\right|\) va \(\left|-x+3,1\right|\) dat GTNN
Ma \(\begin{cases}\left|2y+7,4\right|\ge0\\\left|-x+3,1\right|\ge0\end{cases}\)
=> \(\left|2y+7,4\right|+\left|-x+3,1\right|\ge0\) do phai dat GTNN
=>\(\left|2y+7,4\right|+\left|-x+3,1\right|=0\)
=> GTNN cua \(\left|2y+7,4\right|+6,2+\left|-x+3,1\right|\)=0+6,2=6,2
Giá trị nhỏ nhất của
|2x + 7,4| + 6,2+ |-x+2,1|
(chỉ cần kết quả)
Vì |2x+7,4| lớn hơn hoặc bằng 0
|-x+2,1| lớn hơn hoặc bằng 0
Nên GTNN là 6,2
Giá trị nhỏ nhất của
|2x + 7,4| + 6,2+ |-x+2,1|
(chỉ cần kết quả)
nếu chỉ cần kết quả thì là 6,2
Giá trị nhỏ nhất của biểu thức | 2.y+7,4 | +6,2+ | -x+2,1 | là ?
Giải chi tiết
vi neu |2.y+7.4|=0 va |-x+2,1|=0
thi bieu thuc dat gia tri nho nhat
=>gia tri nho nhat cua bieu thuc la 6,2
kb nha
Tìm giá trị của x và y để \(S=\left|x-19\right|+\left|2y-10\right|+2019\) đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó ?
Mk làm như thế này có đúng không ta?
Do \(\left|x-19\right|\ge0\)
\(\left|2y-10\right|\ge0\)
\(\Rightarrow\left|x-19\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\left|x-19\right|+\left|2y-10\right|+2019\ge0+2019=2019\)
Dấu " = " xảy ra :
\(\hept{\begin{cases}x-19=0\\2y-10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=19\\y=5\end{cases}}\)
Do đó : x = 19 , y = 5
Thay x = 19 , y = 5 ta có :
\(\left|19-19\right|+\left|2\cdot5-10\right|+2019\)
\(=0+0+2019=2019\)
Vậy giá trị nhỏ nhất của S là 2019
Mk thi chưa làm xong GTNN =_=" , ko bt bao nhiêu điểm Toán nữa
Trả lời :
Ừ ! Bạn làm đúng rồi đó ! Theo quan điểm riêng !
Chúc bạn học tốt !
^_^
Cho x,y là các số thực. Tìm giá trị nhỏ nhất của biểu thức P = \(\left(x+2y+1\right)^2+\left(x+2y+5\right)^2\)
Đặt \(x+2y+1=a\)
\(P=a^2+\left(a+4\right)^2=2a^2+8a+16=2\left(a+2\right)^2+8\ge8\)
Câu 1: Giá trị nhỏ nhất của
\(\left|x-3\right|+\left|Y+3\right|+2016\) là:...
Câu 2: Giá trị của x để biểu thức:
\(M=\left(2x-1\right)^2+\left(2y-1\right)+2013\)Đạt giá trị nhỏ nhất
Câu 3: Giá trị x>0 thỏa mãn (x-10)+(2x-6)=8
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
Cho x-y=2, tìm giá trị nhỏ nhất của biểu thức C= \(\left|2x+1\right|+\left|2y+1\right|\)
\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)
\(C_{min}=4\)
tìm giá trị nhỏ nhất của: P=\(\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\)
Ta có :
\(\left(-x+y-3\right)^4\ge0\)
\(\left(x-2y\right)^2\ge0\)
\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)
nên : * \(-x+y-3=0\)và \(x-2y=0\)
\(\Rightarrow y-x=3\)vs \(x=2y\)
\(\Rightarrow x=y-3\)(1) vs \(x=2y\)(2)
Từ (1) vs (2), ta có : \(y-3=2y\)
\(\Rightarrow y=3\)
\(\Rightarrow x=y-3=3-3=0\)
\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.