Chứng minh :
A=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< 1\)
Cho A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)
Chứng minh : \(\frac{2017}{2018} > A > \frac{2008}{2018} \)
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
Xét B = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
=\(1-\frac{1}{2018}\)
Xét : \(\frac{2018}{2018}=1\)=) B < 1
khoan hình như sai đề
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2002^2}\)
Chứng minh rằng A<\(\frac{1505}{2008}\)
Chứng minh :
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}< 1\)
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=1-\frac{1}{2008}< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\) (đpcm)
Chứng minh rằng \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+.............+\frac{1}{2009\sqrt{2008}}< 2\)
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{\sqrt{n^2}}-\frac{1}{\sqrt{\left(n+1\right)^2}}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(< \left(1+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2009\sqrt{2008}}\)
\(=2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2009}}\right)< 2\)
a, Tính nhanh :
\(\frac{2009\times(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008})}{2008-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{2006}{2007}+\frac{2007}{2008}\right)}\)
b, Cho \(\text{Q}=2+2^2+2^3+...+2^{10}\). Chứng tỏ rằng \(Q⋮3\).
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
Cho \(A=1.2..........2008.\left(1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2008}\right)\)
Chứng minh rằng A chia hết cho 2009.
\(\)chứng minh rằng:
\(a,\)\(R=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2^{2008}}{3^{2008}}< \frac{3}{4}\)
Chứng minh rằng:
a) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}<1\)
b) \(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}>\frac{13}{21}\)
Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM
a) Ta có :1/22 + 1/32 + 1/42 + ... + 1/20082 < 1-1/2+1/2-1/3+...+1/2007-1/2008=1-1/2008<1
=> ĐPCM
Chứng minh rằng:
\(K=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}<\frac{3}{4}\)
Chứng minh rằng
\(K=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}<\frac{3}{4}\)