Chứng minh 201320 - 112 \(⋮10\)
Chứng minh rằng: A = 1 12 + 1 13 + ... + 1 22 > 1 2
A = 1 12 + 1 13 + ... + 1 22 > 1 22 + 1 22 + ... + 1 22 ⏟ 11 s = 11 22 = 1 2
chứng minh rằng tổng các phân số sau đây lớn hơn 1 nhưng nhỏ hơn 2
A=6/16+15/75+35/42
B=10/22+15/36+20/52+40/112
Làm luôn nhé
\(A=\frac{3}{8}+\frac{1}{5}+\frac{5}{6}>\frac{1}{6}+\frac{5}{6}=1\)
\(A=\frac{3}{8}+\frac{1}{5}+\frac{5}{6}< \frac{3}{8}+\frac{1}{4}+\frac{5}{4}=\frac{3}{8}+\frac{2}{8}+\frac{10}{8}=\frac{15}{8}< \frac{16}{8}=2\)
Vậy 1<A<2
\(B=\frac{5}{11}+\frac{5}{12}+\frac{5}{13}+\frac{5}{14}>\frac{5}{14}.4=\frac{10}{7}>1\)
\(B=\frac{5}{11}+\frac{5}{12}+\frac{5}{13}+\frac{5}{14}< \frac{5}{10}.4=2\)
Vậy 1<B<2
Chứng minh rằng: A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 2
A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 22 + 1 22 + ... 1 22 ⏟ 11 s = 11 22 = 1 2 .
Chứng minh rằng: A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 2
A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 2 ⇔ 1 12 + 1 13 + 1 14 + ... + 1 22 > 11 22 ⇔ 1 12 − 1 22 + 1 13 − 1 22 + 1 14 − 1 22 + ... + 1 22 − 1 22 > 0
Vì 1 12 > 0 , 1 13 > 0 , ... , 1 21 > 1 22 nên 1 12 − 1 22 > 0 , 1 13 − 1 22 > 0 , ... , 1 21 − 1 22 > 0 , 1 22 − 1 22 = 0
Suy ra A > 1 2
Chứng minh rằng:
a ) A = 1 11 + 1 12 + 1 13 + ... + 1 20 > 1 2 b ) B = 1 5 + 1 6 + 1 7 + ... + 1 16 + 1 17 < 2 c ) C = 1 10 + 1 11 + 1 12 + ... + 1 18 + 1 19 < 1
a) A > 1 20 + 1 20 + ... + 1 20 ⏟ 10 s o = 10 20 = 1 2 .
b) B = 1 5 + ... 1 9 + 1 10 + ... + 1 17 < 1 5 + ... + 1 5 ⏟ 5s o + 1 8 + ... + 1 8 ⏟ 8s o = 2
c) C = 1 10 + 1 11 + 1 12 ... + 1 18 + 1 19 < 1 10 + 1 10 + ... 1 10 ⏟ 9 s o = 1
Chứng minh rằng:
a ) A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 2 b ) B = 1 6 + 1 7 + 1 8 + ... + 1 18 + 1 19 < 2 c ) C = 1 10 + 1 11 + 1 12 + ... + 1 99 + 1 100 > 1
a) A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 22 + 1 22 + ... 1 22 ⏟ 11 s = 11 22 = 1 2 .
b) B = 1 6 + ... 1 9 + 1 10 + ... + 1 19 < 1 4 + ... + 1 4 ⏟ 4 s o + 1 10 + ... + 1 10 ⏟ 10 s o = 2
c) C = 1 10 + 1 11 + ... + 1 100 > 1 10 + 1 100 = ... + 1 100 ⏟ 90 s o = 1 10 + 90 100 = 1
Chứng minh rằng với số tự nhiên n > 2 thì không là số tự nhiên
Chứng minh rằng: C = 1 10 + 1 11 + 1 12 + ... + 1 99 + 1 100 > 1
C = 1 10 + 1 11 + 1 12 + ... + 1 99 + 1 100 > 1 ⇔ C = 1 10 + 1 11 + 1 12 + ... + 1 20 + 1 21 + 1 22 + ... + 1 30 + ... + 1 91 + 1 92 + ... + 1 100 C > 1 10 + 10 20 + 10 30 + ... + 10 100 > 10 20 + 10 30 + 10 60 = 1 2 + 1 3 + 1 6 = 1
Chứng minh rằng: C = 1 10 + 1 11 + 1 12 + ... + 1 99 + 1 100 > 1
C = 1 10 + 1 11 + ... + 1 100 > 1 10 + 1 100 = ... + 1 100 ⏟ 90 s o = 1 10 + 90 100 = 1
Chứng minh rằng : \(\frac{1}{112^2}+\frac{1}{112^2}+\frac{1}{113^2}+\frac{1}{114^2}+\frac{1}{115^2}<\frac{1}{2.5.11.23}\)