Ta có: \(\frac{1}{2^2}<\frac{1}{1\cdot2}=1-\frac12\)
\(\frac{1}{3^2}<\frac{1}{2\cdot3}=\frac12-\frac13\)
...
\(\frac{1}{n^2}<\frac{1}{\left(n-1\right)\cdot n}=\frac{1}{n-1}-\frac{1}{n}\)
Do đó: \(\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}<1-\frac12+\frac12-\frac13+\cdots+\frac{1}{n-1}-\frac{1}{n}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}<1-\frac{1}{n}<1\)
=>\(1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}<1+1=2\)
=>A<2
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}>0\)
=>\(1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}>1\)
=>A>1
Do đó: 1<A<2
=>A không là số tự nhiên