Chứng minh rằng với số tự nhiên n > 2 thì không là số tự nhiên
Chứng minh rằng với mọi số tự nhiên n thì các phân số sau đều là phân số tối giản
a)\(\dfrac{15n+1}{30n+1}\)
b)\(\dfrac{3n+2}{5n+3}\)
Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\). Chứng tỏ rằng A không phải là số tự nhiên.
Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\). Chứng tỏ rằng A không phải là số tự nhiên.
a) Cho phân số A=\(\dfrac{2n-3}{n+7}\)
Hỏi có bao nhiêu số tự nhiên n nhỏ hơn 200 để A chưa tối giản.
b) Tìm số tự nhiên n biết:
\(\dfrac{1}{1}\)+\(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+....+\(\dfrac{1}{1+2+3+4+...+n}\)=\(\dfrac{200}{101}\)
Giúp với ạ!!!
Chứng minh rằng số tự nhiên A chia hết cho 101 với:
A=1.2.3...99.100,(1\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}+\dfrac{1}{100}\))
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
\(\dfrac{ n+1}{2n+3 }\) ý a
\(\dfrac{ 2n+3}{4n+8 }\)ý b
\(\dfrac{ 3n+2}{ 5n+3}\) ý c
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
A = \(\dfrac{2022}{2021^{2^{ }}+1}\) + \(\dfrac{2022}{2021^{2^{ }}+2}\) + \(\dfrac{2022}{2021^2+3}\) + ... + \(\dfrac{2022}{2021^{2^{ }}+2021}\)
Chứng tỏ rằng A không phải số tự nhiên