CMR: 22225555 + 55552222 chia hết cho 7 (dùng đồng dư mod)
CMR: 222333 + 333222 chia hết cho 13
Dùng đồng dư mod nhá
Ta có 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13)
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13)
Cộng lại ta có:
222^333 + 333^222 ≡ 0 (mod 13) đpcm
Bài 2:
Ta có 109^3 ≡ 1 (mod 7) nên 109^345 ≡ 1( mod 7)
Vậy số dư của phép chia trên là 1
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
GIÚP TỚ NKE EVERYONE. I WILL TICK FOR YOU.
Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy
Toán khó phải có người lo mink ko lo đc mấy bn lo dùm mink nka
Tìm dư của phép chia
3100 cho 13
3100 + 3105 cho 13
Giúp mk nhé: mk cảm ơn nhìu
Mk có bài ví dụ tương tự nek:
3100 cho 7
Giải
36 đồng dư với 1 (mod 7)
(36)16 đồng dư với 1 (mod 7)
32 đồng dư với 2 (mod 7)
(32)2 đồng dư với 22 (mod 7)
34 đồng dư với 4 (mod 7)
Suy ra (36)16 . 34 = 4 (mod 7)
Vậy 3100 chia 7 dư 4
CMR: 19n-18n7-1 chia hết cho 72
Dùng đồng dư thức nha
Chứng minh 1n+2n+3n+4n ⋮ 5 ⇔ n không chia hết cho 4(với mọi số tự nhiên n khác 0)
gợi ý : 1 đồng dư 1 (mod 5)
4 đồng dư -1(mod 5)
Cho aϵZ. CMR:
a) Nếu a đồng dư 1 (mod 2) thì a2 đồng dư 1 (mod 8).
b) Nếu a đồng dư 1 (mod 3) thì a3 đồng dư 1 (mod 9)
Lời giải:
a)
$a\equiv 1\pmod 2$ nên $a$ có dạng $2k+1$ $(k\in\mathbb{Z}$
Khi đó:
$a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$
Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 4k(k+1)\vdots 8$
$\Rightarrow a^2=4k(k+1)+1$ chia $8$ dư $1$ hay $a^2\equiv 1\pmod 8$
b)
$a\equiv 1\pmod 3\Rightarrow a-1\equiv 0\pmod 3(1)$ hay
Lại có:
$a\equiv 1\pmod 3\Rightarrow a^2+a+1\equiv 1+1+1\equiv 0\pmod 3(2)$
Từ $(1);(2)\Rightarrow (a-1)(a^2+a+1)\equiv 0\pmod 9$
hay $a^3-1\equiv 0\pmod 9\Leftrightarrow a^3\equiv 1\pmod 9$
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
Bài 6 : Chứng minh rằng : 14k+24k+34k+44k không chia hết cho 5 với mọi k N
Bài 7 : Chứng minh rằng nếu n không chia hết cho 3 thì 32n+3n+1 chia hết cho13
B1 CMR nếu (ab+cd)chia hết cho 11 thì abcd chia hết cho 11
B2 có STN nào chia cho 12 dư 8 mà chia 16 dư 2 ko
B3 CMR a)cho (abc-deg) CMR abcdeg chia hết cho 13
b)cho abc chia hết cho 7 CM (2a+3b+c)chia hết cho 7
B4 có 12 thợ kim hoàn mỗi ngày làm 100 đồng vàng 1 đồng nặng 10 g có thằng láu cá 1 ngày làm 100 đồng 1 đồng 9 g và lấy chỗ thừa
ông chủ đã xác định tên gian chỉ với 1 lần cân.Đố bạn biết ông ấy dùng cách nào?
CMR:
a) Nếu a đồng dư 1 (mod2) thì a^2 đồng dư 1 (mod 8)
b) Nếu a đồng dư 1(mod 3) thì a^3 đồng dư 1 (mod9)