Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ninh Nguyễn Anh Ngọc
Xem chi tiết
Phuong Truc
15 tháng 10 2016 lúc 20:25

Ta có 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13) 
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13) 
Cộng lại ta có: 
222^333 + 333^222 ≡ 0 (mod 13) đpcm 
Bài 2: 
Ta có 109^3 ≡ 1 (mod 7) nên 109^345 ≡ 1( mod 7) 
Vậy số dư của phép chia trên là 1

Phan Thanh Bình
15 tháng 10 2016 lúc 20:30

cho mình hỏi mod là j???

xhok du ki
Xem chi tiết
Lương Thị Lan
3 tháng 1 2016 lúc 21:50

Chtt

luu thi tuyet
3 tháng 1 2016 lúc 21:53

Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy

xhok du ki
3 tháng 1 2016 lúc 21:53

Toán khó phải có người lo mink ko lo đc mấy bn lo dùm mink nka

Phương Anh (NTMH)
Xem chi tiết
Mạnh Nguyễn Đức
24 tháng 7 2016 lúc 5:39

Giải rồi trả lời cái j nữa bucminh

Nguyễn Vũ Bảo Huy
29 tháng 7 2016 lúc 8:05

Bó taybucminh

Nghị Hoàng
Xem chi tiết
Vũ Minh Khang
Xem chi tiết
Angela jolie
Xem chi tiết
Akai Haruma
14 tháng 1 2020 lúc 9:43

Lời giải:
a)

$a\equiv 1\pmod 2$ nên $a$ có dạng $2k+1$ $(k\in\mathbb{Z}$

Khi đó:

$a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$

Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên $k(k+1)\vdots 2$

$\Rightarrow 4k(k+1)\vdots 8$

$\Rightarrow a^2=4k(k+1)+1$ chia $8$ dư $1$ hay $a^2\equiv 1\pmod 8$

b)

$a\equiv 1\pmod 3\Rightarrow a-1\equiv 0\pmod 3(1)$ hay

Lại có:

$a\equiv 1\pmod 3\Rightarrow a^2+a+1\equiv 1+1+1\equiv 0\pmod 3(2)$

Từ $(1);(2)\Rightarrow (a-1)(a^2+a+1)\equiv 0\pmod 9$

hay $a^3-1\equiv 0\pmod 9\Leftrightarrow a^3\equiv 1\pmod 9$

Khách vãng lai đã xóa
hoabinhyenlang
Xem chi tiết
nguyen minh hieu
Xem chi tiết
Đặng Gia Ân
Xem chi tiết