Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Kiều Ngọc Ánh
Xem chi tiết
Xyz OLM
1 tháng 11 2021 lúc 11:32

Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)

Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)

Khi đó a2 + b2 + c2 = 661

<=> (20k)2 + (15k)2 + (6k)2 = 661

<=> 661k2 = 661

<=> k2 = 1

<=> k = \(\pm1\)

Khi k = 1 => a = 20 ; b = 15 ; c = 6

Khi k = -1 => a = -20 ; b = - 15 ; c = -6

Khách vãng lai đã xóa
Xyz OLM
1 tháng 11 2021 lúc 11:39

Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)

=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)

Khách vãng lai đã xóa
Vũ Quang Dũng
2 tháng 11 2021 lúc 15:28
Cho hỏi câu 1 bạn làm thế nào vậy ạ
Khách vãng lai đã xóa
nguyễn văn nhật nam
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 15:15

Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:

a.

\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)

\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)

\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)

Nguyễn Việt Lâm
22 tháng 3 2021 lúc 15:17

c.

\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)

\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)

d.

\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)

Trần Thị Thúy
Xem chi tiết
Linh sky mtp
21 tháng 7 2016 lúc 9:17

<=>a^2-2a+b^2+4b+4c^2-4c+1+4+1=0

<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0

<=>(a-1)2+(b+2)2+(2c-1)2=0

<=>(a-1)^2=0 hoặc(b+2)^2=0 hoặc (2c-1)^2=0

+,(a-1)^2=0<=>a-1=0<=>a=1

+,(b+2)^2=0<=>b+2=0<=>b=-2

+,(2c-1)^2=0<=>2c-1=0<=>2c=1<=>c=1/2

Nguyễn Thị Ngọc Anh
Xem chi tiết
Hoàng Phúc
19 tháng 7 2016 lúc 14:51

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(=>\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(=>\left(a^2-2.a.1+1^2\right)+\left(b^2+2.b.2+2^2\right)+\left[\left(2c\right)^2-2.2c.1+1^2\right]=0\)

\(=>\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\left(1\right)\)

Vì : \(\left(a-1\right)^2\ge0\) với mọi a

\(\left(b+2\right)^2\ge0\) với mọi b

\(\left(2c-1\right)^2\ge0\) với mọi c

=>\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\) với mọi a,b,c

Để (1) thì \(\left(a-1\right)^2=\left(b+2\right)^2=\left(2c-1\right)^2=0=>a=1;b=-2;c=\frac{1}{2}\)

Vậy........

Bảo Châu Trần
Xem chi tiết
Thảo Lê Thị
26 tháng 6 2016 lúc 19:27

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+1\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+1=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\\c=\frac{1}{2}\end{cases}}\)

onepiece
Xem chi tiết
super xity
Xem chi tiết
văn hoàng thu trang
Xem chi tiết
Freya
22 tháng 6 2017 lúc 19:34

 a^2-2a+b^2+4b+4c^2-4c+6=0 
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0 
<=>(a-1)^2+(b+2)^2+(2c-1)^2=0 
vi (a-1)^2>=0,(b+2)^2>=0,(2c-1)^2>=0 
=>(a-1)^2+(b+2)^2+(2c-1)^2>=0 
dau = xay ra <=>(a-1)^2=0,(b+2)^2=0,(2c-1)^2=0 
<=>a-1=b+2=2c-1=0 
<=>a=2,b=-2,c=1/2 
vay a=2,b=-2,c=1/2

CHÚC BẠN HỌC GIỎI

Freya
22 tháng 6 2017 lúc 19:33

 a^2-2a+b^2+4b+4c^2-4c+6=0 
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0 
<=>(a-1)^2+(b+2)^2+(2c-1)^2=0 
vi (a-1)^2>=0,(b+2)^2>=0,(2c-1)^2>=0 
=>(a-1)^2+(b+2)^2+(2c-1)^2>=0 
dau = xay ra <=>(a-1)^2=0,(b+2)^2=0,(2c-1)^2=0 
<=>a-1=b+2=2c-1=0 
<=>a=2,b=-2,c=1/2 
vay a=2,b=-2,c=1/2

CHÚC BẠN HỌC GIỎI

Phạm Thị Thùy Linh
Xem chi tiết
Đào Thu Hoà
28 tháng 4 2019 lúc 13:16

\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0.\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2b-1\right)^2=0\)

Mà \(\left(a-1\right)^2\ge0\forall a\)\(\left(b+2\right)^2\ge0\forall b\),\(\left(2c-1\right)^2\ge0\forall c\)

\(\Rightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}.\)

Ngọc Nguyễn
28 tháng 4 2019 lúc 13:25

  a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

\(\Leftrightarrow\)a2 - 2a + 1 + b2 + 4b + 4 + 4c2 - 4c2 + 1 = 0

\(\Leftrightarrow\)( a - 1 )2 + ( b + 2 )2 + ( 2c - 1 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)

Vậy a = 1 , b = -2 , c = \(\frac{1}{2}\)

Lê Tài Bảo Châu
5 tháng 5 2019 lúc 8:12

NGọc Nguyễn suy ra 1 phát luôn là sai đấy mà ko có nhân xét gì à