tìm giá trị lớn nhất : B= 5-x^2+2x-4y^2-4y
giúp mình nha
tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
A=x^2-2x+2x+y^2-4y+7
B=5-x^2+2x-4y^2-4y
giúp mình với please^~^
2.Tìm giá trị nhỏ nhất của mỗi biểu thức
A=x2-6x+15
B=x2+4y2-4x+4y+15
3. tìm giá trị lớn nhất
A=-x2+4x+3
B=-x2-9y2+2x-6y+5
giúp mình với ạ
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
a)Tìm giá trị nhỏ nhất của biểu thức A=(x-1)2+(x-3)2
b)Tìm giá trị lớn nhất của biểu thức B=5-x2+2x-4y2-4y
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
Bài1Tìm giá trị lớn nhất:
a)x-x^2
b)5-8x-x^2
d)5-x^2+2x-4y^2-4y
Bài 2 Tìm giá trị nhỏ nhất
x^2-4xy+5y^2+10x-22y+28
\(A=x-x^2=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)
Vậy Max A = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)
***
\(B=5-8x-x^2=-\left(x^2+2\times x\times4+4^2-4^2-5\right)=-\left[\left(x+4\right)^2-21\right]\)
\(\left(x+4\right)^2\ge0\)
\(\left(x+4\right)^2-21\ge-21\)
\(-\left[\left(x+4\right)^2-21\right]\le21\)
Vậy Max B = 21 khi x = - 4
***
\(C=5-x^2+2x-4y^2-4y=-\left(x^2-2\times x\times1+1^2-1^2+\left(2y\right)^2-2\times2y\times1+1^2-1^2-5\right)=-\left[\left(x-1\right)^2+\left(2y-1\right)^2-7\right]\)
\(\left(x-1\right)^2\ge0\)
\(\left(2y-1\right)^2\ge0\)
\(\left(x-1\right)^2+\left(2y-1\right)^2-7\ge-7\)
\(-\left[\left(x-1\right)^2+\left(2y-1\right)^2-7\right]\le7\)
Vậy Max C = 7 khi x = 1 và y = \(\frac{1}{2}\)
Với giá trị nào của biến, các đa thức sau có giá trị lớn nhất? Tìm giá trị lớn nhất đó.
a) -x2 + x + 6
b) -x2 + 2x - 4y2 - 4y + 5
GIÚP MÌNH NHÉEEEEEEEEEEEEEEEEEEEEEEEEEE !!!!!!!!!!!!!!!!!!
\(a,-x^2+x+6=-\left(x^2-x-6\right)=-\left(x^2-x+1-7\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}-7\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\right]=\frac{25}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{25}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x-\frac{1}{2}=0< =>x=\frac{1}{2}\)
Vậy...............
b, \(-x^2+2x-4y^2-4y+4=-x^2+2x-4y^2-4y-1-4+9\)
\(=-x^2+2x-1-4y^2-4y-4+9=-\left(x^2-2x+1\right)-\left(4y^2+4y+4\right)+9\)
\(=-\left(x-1\right)^2-\left[\left(2y\right)^2+2.2y+1^2+3\right]+9=-\left(x-1\right)^2-\left[\left(2y+1\right)^2+3\right]+9\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2-3-9=-\left(x-1\right)^2-\left(2y+1\right)^2-12=-12-\left[\left(x-1\right)^2+\left(2y+1\right)^2\right]\le-12\)
(với mọi x)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}< =>\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)
Vậy............
Giải giúp mk câu này lun nha. Cùng vs đề bài 2 câu trên lun
a) -x2 + 4x - 4
b) -x2 + 6x- 15
tìm giá trị lớn nhất
A= 5 - 8x - x2
B = 5 - x2 + 2x - 4y2 -4y
A=-(x2+8x+16)+21<=21 (tự làm tiếp)
B=-(x2-2x+1)-(4y2+4y+1)+7
=-(x-1)2-(2y+1)2+7<=7
\(A=5-8x-x^2\)
\(A=-x^2-8x+5\)
\(-A=x^2+8x-5\)
\(-A=x^2+4x+4x+16-21\)
\(-A=x.\left(x+4\right)+4.\left(x+4\right)-21\)
\(-A=\left(x+4\right).\left(x+4\right)-21\)
\(A=-\left(x+4\right)^2-21\le-21\)
Dấu = xảy ra khi A = -21 \(\Leftrightarrow-\left(x+4\right)^2-21=-21\)
\(\Leftrightarrow-\left(x+4\right)^2=0\Rightarrow x+4=0\Rightarrow x=-4\)
1/Tìm x, y
a) | 3 - 2x | + | 4y + 5 | = 0
b) | 2/3 - 1/2 + 3/4x | + | 1,5 - 11/17 + 23/13y | = 0
2/Tìm giá trị nhỏ nhất của A, B
A= | x - 3/4 | + 1
B= | 3x + 1 | - 2
3/Tìm giá trị lớn nhất của A, B
A= 5 - | 2/3 - x |
B= 2019 - | 4x - 3 |
Giúp mình nha mọi người :)))
Sorry mik chỉ làm được bài b mong bạn thông cảm
Ta có : B=x2+x+1x2+2x+1=x2+x+1(x+1)2
Đặt y=x+1⇒x=y−1⇒B=(y−1)2+(y−1)+yy2=y2−y+1y2=1y2−1y+1
Đặt : t=1y⇒B=t2−t+1=(t−12)2+34≥34
Vậy Bmin=34⇔t=12⇔y=2⇔x=1
~Hok tốt~
P/s:Mik nghĩ thế mong đúng
Tìm giá trị lớn nhất của các biểu thức:
a. A = 5 - 8x - x^2 b. B = 5 - x^2 + 2x - 4y^2 - 4y
A=\(5-8x-x^2=-\left(x^2+8x+16\right)+16+5\)
=\(21-\left(x+4\right)^2\)<=21
dấu = xảy ra khi x=-4
=> GTLN A=21 khi x=-4
b) \(5-x^2+2x-4y^2-4y\)
=\(-\left(x^2-2x+1\right)-\left(4y^4+4y+1\right)-2+5\)
=\(3-\left(x-1\right)^2-\left(2y-1\right)^2\)<=3
daaus bằng xảy ra khi x=1 và y=1/2
=> GTLN B=3 khi x=1 và y=1/2
A= 5-8x-x2 = -x2-8x+16-11 = -(x2-8x+16)-11 = -(x-4)2-11
Vì (x-4)2 ≥ 0
⇒-(x-4)2 ≤ 0
⇒-(x-4)2-11 ≤ -11
⇒ A=-11 là giá trị lớn nhất của biểu thức khi x=4
1.Tìm giá trị lớn nhất
A=4x-x^2-3
B=-x^2-4x-2
C=2x-2x^2-5
D=-2x^2-3x+5
2.Tìm giá trị nhỏ nhất
A=x^2-2x+y^2-4y+6
B=3x^2+y^2-2xy-7
C=(x-1)(x+2)(x+3)(x+6)
D=x^2+y^2-4y+6