Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Tae-hyung
Xem chi tiết
Nguyễn Thị Bích Thảo
Xem chi tiết
Minh Thư
5 tháng 10 2019 lúc 20:59

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

Minh Thư
5 tháng 10 2019 lúc 21:02

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

Edogawa Conan
5 tháng 10 2019 lúc 21:02

a) 2x2 + y2 + 2xy + 10x + 25 = 0

=> (x2 + 2xy + y2) + (x2 + 10x + 25) = 0

=> (x + y)2 + (x + 5)2 = 0 

    <=> \(\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x\\x=-5\end{cases}}\) <=> \(\hept{\begin{cases}y=5\\x=-5\end{cases}}\)

b)c) xem lại đề

Diệp Vũ Ngọc
Xem chi tiết
Nguyễn Thị Ngọc Thơ
27 tháng 3 2019 lúc 22:01

Với \(x,y>0\). Áp dụng BĐT AM-GM, ta có:

\(x^4+y^2\ge2x^2y\)

\(\Rightarrow x^4+y^2+2xy^2\ge2x^2y+2xy^2=2xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)(đpcm)

★ɮεşէ  Ꮰʉŋɠℓε VŇ★
Xem chi tiết
Nguyễn Anh Huy
16 tháng 11 2019 lúc 19:49

bấn MT

Khách vãng lai đã xóa
★ɮεşէ  Ꮰʉŋɠℓε VŇ★
16 tháng 11 2019 lúc 19:50

cần gấp

Khách vãng lai đã xóa
hồ nhật anh
16 tháng 11 2019 lúc 21:30
a,(x-1)²=0 (2x+y-1)=0
Khách vãng lai đã xóa
Thái Đào
Xem chi tiết
Đặng Thanh Hường
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 12 2020 lúc 20:34

\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)

\(A_{min}=-1\) khi \(2x+y=0\)

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2021 lúc 16:31

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

Nguyễn Việt Lâm
23 tháng 10 2021 lúc 16:41

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)

kudo shinichi
Xem chi tiết
Đặng Ngọc Quỳnh
1 tháng 1 2021 lúc 10:02

Từ pt (2) ta có \(x^4-4x^3-4yx^2+4x^2+y^2+2xy=0\)

\(\Leftrightarrow\left(x^4-4x^3+4x^2\right)-4\left(x^2-2x\right)y+4y^2-3y^2-6xy=0\)\(\Leftrightarrow\left(x^2-2x-2y\right)^2=3y^2+6xy\)

Hệ pt đã cho trở thành: \(\hept{\begin{cases}x^2+2xy-2x-y=0\\\left(x^2-2x-2y\right)^2=3y^2+6xy\end{cases}}\Rightarrow\hept{\begin{cases}y=x^2+2xy-2x\left(3\right)\\y^2\left(1+2x\right)^2=3y\left(y+2x\right)\left(4\right)\end{cases}}\)

Từ (4) ta có: \(2y\left(2xy+2x^2-3x-y\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\2xy+2x^2-3x-y=0\end{cases}}\)

 + Với y=0 thì từ (3) ta có: \(x^2-2x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

+ Với \(2xy+2x^2-3x-y=0\Rightarrow y=2xy+2x^2y-3x\)thay vào (3) có \(x\left(2xy-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\Rightarrow y=0\\y=\frac{x+1}{2x}\left(x\ne0\right)\end{cases}}\)

Thay \(y=\frac{x+1}{2x}\left(x\ne0\right)\)vào pt(3) ta có: \(\left(x-1\right)\left(2x^2+1\right)=0\Leftrightarrow x=1\Rightarrow y=1\)

Vậy hệ pt đã cho có 3 nghiệm (x;y)=(0;0),(2;0),(1;1)

Khách vãng lai đã xóa
Kim Tae-hyung
Xem chi tiết
Kiệt Nguyễn
13 tháng 10 2019 lúc 10:59

a) \(xy+x-y=2\)

\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)

b) \(x-2xy+y=0\)

\(\Leftrightarrow2x-4xy+2y=0\)

\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Tương tự nha

Kiệt Nguyễn
13 tháng 10 2019 lúc 11:00

c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Hoàng Thu Huyền
Xem chi tiết