cho 3 số dương a, b, c thỏa mã
\(\frac{a}{b+c}=\frac{b}{b+c}=\frac{c}{a+b}\)
Tính P=\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
Chứng ming rằng với mọi số dương a,b vad c thỏa mã a+b+c=3 thì \(\frac{a^2b}{2a+b}+\frac{b^2c}{2b+c}+\frac{c^2a}{2c+a}\le\frac{3}{2}\)
Có thể là $\frac{{{a}^{2}}b}{2a+b}+\frac{{{b}^{2}}c}{2b+c}+\frac{{{c}^{2}}a}{2c+a}\le 1$
Cho 3 số thực dương thỏa mãn đk:\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
Tính: P=\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)
Bài làm:
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5\left(a+b+c\right)}{a+b+c}=5\)
\(\Rightarrow\hept{\begin{cases}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=3a\\a+b+c=3b\\a+b+c=3c\end{cases}}\Rightarrow a=b=c\)
Vậy \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
Vậy P = 6
Vì a ; b ; c > 0 => a + b + c > 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{3a+b+c+a+3b+c+a+b+3c}{a+b+c}\)
\(=\frac{5\left(a+b+c\right)}{a+b+c}=5\)
\(\Rightarrow\hept{\begin{cases}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{cases}}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)
Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
\(=\frac{3a}{a}+\frac{b+c}{a}=\frac{3b}{b}+\frac{a+c}{b}=\frac{3c}{c}+\frac{a+b}{c}\)
\(=3+\frac{b+c}{a}=3+\frac{a+c}{b}=3+\frac{a+b}{c}\)
\(=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
theo tính chất dãy tỉ số bằng nhau
\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\hept{\begin{cases}\frac{b+c}{a}=2\Leftrightarrow b+c=2a\left(1\right)\\\frac{a+c}{b}=2\Leftrightarrow a+c=2b\left(2\right)\\\frac{a+b}{c}=2\Leftrightarrow a+b=2c\left(3\right)\end{cases}}\)
thay (1);(2);(3) vào \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)ta được
\(P=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c là 3 số thực dương thỏa mãn điều kiện \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\). Tính giá trị biểu thức
\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1
Ta có : a+b-c/c=1 => a+b-c=c => a+b+c=3c (1)
Ta có : b+c-a/a=1 => b+c-a=a => a+b+c=3a (2)
Ta có : c+a-b/b=1 => c+a-b=b => a+b+c=3b (3)
Từ (1);(2);(3) => 3c=3a=3b => a=b=c => b/a=1 ; a/c=1 ; c/b=1
=> B= (1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) = 2.2.2 = 8
=8
8 8 cái địt mẹ mày
Cho các số dương a,b,c thỏa mãn abc=1.Chứng minh rằng
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{c}+\frac{a}{c}+\frac{b}{a}\ge3\sqrt[3]{\frac{abc}{c^3}}=\frac{3}{c}\left(1\right)\)
Chứng minh tương tự ta cũng có:
\(\frac{c}{b}+\frac{c}{b}+\frac{a}{c}\ge\frac{3}{b}.\left(2\right)\frac{b}{a}+\frac{b}{a}+\frac{c}{a}\ge\frac{3}{a}.\left(3\right)\)
Cộng theo vế của (1),(2) và (3) ta được
\(3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(4\right)\)
Mặt khác, do abc=1 nên theo BĐT AM-GM
ta có \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(\frac{a}{b}+ab\right)+\left(\frac{b}{c}+bc\right)+\left(\frac{c}{a}+ca\right)\ge2a+2b+2c.\left(5\right)\)
Từ (4) và (5) =>đpcm
Đẳng thức xảy ra khi a=b=c=1
Cho ba số dương a, b, c thỏa mãn điều kiện \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2020\)
Hãy tính giá trị biểu thức \(P=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right).\frac{1}{a+b+c}\)
Xét \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
\(=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)
\(=a.\left(\frac{a}{b+c}+1-1\right)+b.\left(\frac{b}{c+a}+1-1\right)+c.\left(\frac{c}{a+b}+1-1\right)\)
\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)
\(=\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
\(=\left(a+b+c\right).2020-\left(a+b+c\right)\)
\(\Rightarrow P=\frac{A}{a+b+c}=\frac{\left(a+b+c\right).2019}{a+b+c}=2019\)
Vậy...
cho a,b,c là 3 số thực dương thỏa mãn điều kiện
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
tính giá trị của biểu thức \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
2.Cho a,b,c,d là các số thực dương thỏa mãn a2 + b2 + c2 = 1. Chứng minh: \(\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}+\frac{1}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}+3\) 1. Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
cho a, b, c là 3 số dương thỏa mãn:
\(\frac{2016c-a-b}{c}=\frac{2016b-a-c}{b}=\)\(\frac{2016a-b-c}{a}\)
tính: A = \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
Công dãy lại => hệ số : \(k=2014\)
Cách đơn giảii không hiệu quả, Thế lại=> a,b,c thay vào ra A