Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyệt Băng Vãn
Xem chi tiết
Nguyen
23 tháng 5 2021 lúc 16:54

Có thể là $\frac{{{a}^{2}}b}{2a+b}+\frac{{{b}^{2}}c}{2b+c}+\frac{{{c}^{2}}a}{2c+a}\le 1$

Khách vãng lai đã xóa
dinh ha vy
Xem chi tiết
Nguyễn Minh Đăng
8 tháng 8 2020 lúc 8:27

Bài làm:

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5\left(a+b+c\right)}{a+b+c}=5\)

\(\Rightarrow\hept{\begin{cases}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=3a\\a+b+c=3b\\a+b+c=3c\end{cases}}\Rightarrow a=b=c\)

Vậy \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)

Vậy P = 6

Khách vãng lai đã xóa
Xyz OLM
8 tháng 8 2020 lúc 8:31

Vì a ; b ; c > 0 => a + b + c > 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{3a+b+c+a+3b+c+a+b+3c}{a+b+c}\)

                                                                                       \(=\frac{5\left(a+b+c\right)}{a+b+c}=5\)

\(\Rightarrow\hept{\begin{cases}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{cases}}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)

Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)

Khách vãng lai đã xóa
Trí Tiên亗
8 tháng 8 2020 lúc 8:34

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)

\(=\frac{3a}{a}+\frac{b+c}{a}=\frac{3b}{b}+\frac{a+c}{b}=\frac{3c}{c}+\frac{a+b}{c}\)

\(=3+\frac{b+c}{a}=3+\frac{a+c}{b}=3+\frac{a+b}{c}\)

\(=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)

theo tính chất dãy tỉ số bằng nhau

\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\hept{\begin{cases}\frac{b+c}{a}=2\Leftrightarrow b+c=2a\left(1\right)\\\frac{a+c}{b}=2\Leftrightarrow a+c=2b\left(2\right)\\\frac{a+b}{c}=2\Leftrightarrow a+b=2c\left(3\right)\end{cases}}\)

thay (1);(2);(3) vào \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)ta được

\(P=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)

Khách vãng lai đã xóa
Vũ Bùi Nhật Linh
Xem chi tiết
thu
Xem chi tiết
Phan Anh Tài
26 tháng 7 2017 lúc 10:43

Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1

Ta có : a+b-c/c=1  => a+b-c=c  => a+b+c=3c   (1)

Ta có : b+c-a/a=1  => b+c-a=a  => a+b+c=3a   (2)

Ta có : c+a-b/b=1  => c+a-b=b  => a+b+c=3b   (3)

Từ (1);(2);(3)   => 3c=3a=3b  => a=b=c  => b/a=1 ; a/c=1 ; c/b=1

=> B= (1+b/a)(1+a/c)(1+c/b)  = (1+1)(1+1)(1+1) = 2.2.2 = 8

Vũ Tiến Sỹ
21 tháng 11 2019 lúc 8:18

=8

8 8 cái địt mẹ mày

Khách vãng lai đã xóa
Secret
Xem chi tiết
Thắng Nguyễn
23 tháng 5 2016 lúc 12:42

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{c}+\frac{a}{c}+\frac{b}{a}\ge3\sqrt[3]{\frac{abc}{c^3}}=\frac{3}{c}\left(1\right)\)

Chứng minh tương tự ta cũng có:

\(\frac{c}{b}+\frac{c}{b}+\frac{a}{c}\ge\frac{3}{b}.\left(2\right)\frac{b}{a}+\frac{b}{a}+\frac{c}{a}\ge\frac{3}{a}.\left(3\right)\)

Cộng theo vế của (1),(2) và (3) ta được

\(3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(4\right)\)

Mặt khác, do abc=1 nên theo BĐT AM-GM 

ta có \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(\frac{a}{b}+ab\right)+\left(\frac{b}{c}+bc\right)+\left(\frac{c}{a}+ca\right)\ge2a+2b+2c.\left(5\right)\)

Từ (4) và (5) =>đpcm

Đẳng thức xảy ra khi a=b=c=1

Thắng Nguyễn
23 tháng 5 2016 lúc 12:08

dùng BĐT AM-GM

Secret
23 tháng 5 2016 lúc 12:44

thanks Nguyễn Huy Thắng

Khánh Ngọc
Xem chi tiết
Đặng Ngọc Quỳnh
26 tháng 12 2020 lúc 20:50

Xét \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)

\(=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)

\(=a.\left(\frac{a}{b+c}+1-1\right)+b.\left(\frac{b}{c+a}+1-1\right)+c.\left(\frac{c}{a+b}+1-1\right)\)

\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)

\(=\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)

\(=\left(a+b+c\right).2020-\left(a+b+c\right)\)

\(\Rightarrow P=\frac{A}{a+b+c}=\frac{\left(a+b+c\right).2019}{a+b+c}=2019\)

Vậy...

Khách vãng lai đã xóa
mikazuki kogitsunemaru
Xem chi tiết
Nấm Nấm
Xem chi tiết
Phùng Minh Quân
31 tháng 8 2019 lúc 20:35

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

nguyen quynh trang
Xem chi tiết
ngonhuminh
31 tháng 12 2016 lúc 7:45

Công dãy lại => hệ số : \(k=2014\)

Cách đơn giảii không hiệu quả, Thế lại=> a,b,c thay vào ra A