Tìm \(x,y\in N\) , biết :
\(36-y^2=11.\left(x-2004\right)^2\)
Tìm \(x,y\in N\)biết
\(36-y^2=11\left(x-2004\right)^2\)
Tìm x,y thuộc N biết
\(y.\left(x-2004\right)^2+y^2=2003\)
Tìm\(x,y\in N,\)biết:
\(36-y^2=8\left(x-2010\right)^2\)
\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\)
\(\Rightarrow36\ge y^2\)\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)
Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{36}{8}=\frac{9}{2}\)(loại)
Xét \(y^2=1\Rightarrow8\left(x-2010\right)^2=36-1=35\Rightarrow\left(x-2010\right)^2=\frac{35}{8}\)(loại)
Bạn xét tiếp nha :))
Ta có: (x - 2010)2 \(\ge\)0 \(\forall\) x <=> 8(x - 2010)2 \(\ge\)0 \(\forall\)x
<=>36 - y2 \(\ge\)0
<=> 36 \(\ge\)y2
<=> y2 \(\le\)36
<=> |y| \(\le\)6
Do y \(\in\)N => 0 \(\le\)y < 6
+) Với y = 0 => 36 - 02 = 8(x - 2010)2
=> 36 = 8(x - 2010)2
=> (x - 2010)2 = 36 : 8 (ko thõa mãn)
+) Với y = 1 => 36 - 12 = 8(x - 2010)2
=> 35 = 8(x - 2010)2
=> (x - 2010)2 = 35 : 8 (ko thõa mãn)
+) Với y = 2 => 36 - 22 = 8(x - 2010)2
=> 32 = 8(x - 2010)2
=> (x - 2010)2 = 32 : 8
=> (x - 2010)2 = 4 = 22
=> \(\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=2012\\x=2008\end{cases}}\)
+) Với y = 3 => 36 - 32 = 8(x - 2010)2
=> (x - 2010)2 = 27 : 8 (ko thõa mãn)
+) Với y = 4 => 36 - 42 = 8(x - 2010)2
=> (x - 2010)2 = 20 : 8 (ko thõa mãn)
+) Với y = 5 => 36 - 52 = 8(x - 2010)2
=> (x - 2010)2 = 11 : 8 (ko thõa mãn)
Vậy ...
Tìm x, y thuộc Z biết: 36 - y2 = 11(x - 2004)2
tìm số tự nhiên x,y biết
\(7\left(x-2004\right)^2=23-y^2\)
\(23-y^2=7\left(x-2004\right)^2\ge0\\ \Leftrightarrow y^2\le23\)
Mà \(y\in N\Leftrightarrow y\in\left\{0;1;2;3;4\right\}\)
Với \(y=0\Leftrightarrow7\left(x-2004\right)^2=23\left(loại\right)\)
Với \(y=1\Leftrightarrow7\left(x-2004\right)^2=22\Leftrightarrow\left(x-2004\right)^2=\dfrac{22}{7}\left(loại\right)\)
Với \(y=2\Leftrightarrow7\left(x-2004\right)^2=19\Leftrightarrow\left(x-2004\right)^2=\dfrac{19}{7}\left(loại\right)\)
Với \(y=3\Leftrightarrow7\left(x-2004\right)^2=14\Leftrightarrow\left(x-2004\right)^2=2\left(loại\right)\)
Với \(y=4\Leftrightarrow7\left(x-2004\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-2004=1\\x-2004=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2005\\x=2003\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2005;4\right);\left(2003;4\right)\)
Tìm x,y thuộc N biết:
a)\(12\left(x-2015\right)+y^2=36\)
b)\(2.3^x+3\)chia hết cho 11
Tìm \(x,y\in Z:\)\(36-y^2=11\left(x-2014\right)^2\)
Tìm x,y \(\in N^{ }\) khác 0
a) 10+\(11^x+6^x=\left(\sqrt{3}\right)^{y!}\)
b) \(2^{x!}+6^y=10^y\)
a.
- Với \(y=1\) vế trái hữu tỉ, vế phải vô tỉ (ktm)
- Với \(y\ge4\Rightarrow y!=8k\Rightarrow\left(\sqrt{3}\right)^y=\left(\sqrt{3}\right)^{8k}=81^k\equiv1\left(mod10\right)\)
Mà \(6^x\equiv6\left(mod10\right)\) ; \(11^x\equiv1\left(mod10\right)\Rightarrow10+11^x+6^x\equiv7\left(mod10\right)\)
\(\Rightarrow\) Pt vô nghiệm
- Với \(y=2\Rightarrow\left(\sqrt{3}\right)^y=3\equiv3\left(mod10\right)\) (vô nghiệm do \(VT\equiv7\left(mod10\right)\) theo cmt)
- Với \(y=3\Rightarrow10+11^x+6^x=27\)
\(\Rightarrow11^x+6^x=17\Rightarrow x=1\)
Vậy \(\left(x;y\right)=\left(1;3\right)\)
b.
Với \(x\ge4\Rightarrow x!=8k\Rightarrow2^{x!}=2^{8k}=256^k\equiv6\left(mod10\right)\)
Và \(6^y\equiv6\left(mod10\right)\Rightarrow2^{x!}+6^y\equiv12\left(mod10\right)\Rightarrow\) vế trái ko chia hết cho 10 trong khi VP chia hết cho 10 (loại)
Với \(x=1\Rightarrow2+6^y\equiv8\left(mod10\right)\Rightarrow\) vô nghiệm
Với \(x=2\Rightarrow4+6^y=10^y\Rightarrow y=1\)
Với \(x=3\Rightarrow64+6^y=10^y\Rightarrow y=2\)
Vậy \(\left(x;y\right)=\left(2;1\right);\left(3;2\right)\)
Tìm số nguyên tố x, y biết \(7.\left(x-2004\right)^2=23-y^2\)
Ta có:\(7\left(x-2004\right)^2=23-y^2\)
\(\Rightarrow y^2+7\left(x-2004\right)^2=23\)
Do \(y^2\ge0\Rightarrow7\left(x-2004\right)^2\le23\)
\(\Rightarrow\left(x-2004\right)^2\le\frac{23}{7}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-2004\right)^2=1\\\left(x-2004\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2005\\x=2004\end{cases}}\)
Với \(x=2005\Rightarrow23-7=y^2\)
\(\Rightarrow y^2=16\Rightarrow y=4\left(L\right)\) vì y là số nguyên tố.
Với \(x=2004\Rightarrow y^2=23\left(L\right)\)
Vậy không có số nguyên tố x;y thỏa mãn đề bài.