) Cho x:y:z = 5:4:3.Tinh gia tri bieu thuc biet
1) Cho x:y:z = 5:4:3.Tinh gia tri bieu thuc biet Y = \(\frac{x+2y-3z}{x-2y+3z}\)
vì x;y;z tỉ lệ với 5;4;3
=>x/5=y/4=z/3
=>x=5k;y=4k;z=3k
=>Y=(x+2y-3z)/(x-2y+3z)=(5k+8k-9k)/(5k-8k+9k)=(4k)/(6k)=2/3
Theo bài ra ta có: \(\frac{x}{5}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\)= k
\(\Rightarrow\) x=5k, y=4k, z=3k
P=\(\frac{5k+8k-9k}{5k-8k+9k}\)=\(\frac{4k}{6k}\)= \(\frac{2}{3}\)
Vậy P=\(\frac{2}{3}\)
Vì x;y;z tỉ lệ với 5;4;3
\(\Rightarrow\)\(\frac{x}{5}\)= \(\frac{y}{4}\)= \(\frac{z}{3}\)
\(\Rightarrow\) x=5k; y=4k; z=3k
Thay vào P ta được:
P = \(\frac{x+2y-3z}{x-2y+3z}\)
\(\Leftrightarrow\)P = \(\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}\)
\(\Leftrightarrow\) P = \(\frac{5k+8k-9k}{5k-8k+9k}\)
\(\Leftrightarrow\) P = \(\frac{\left(5+8-9\right)k}{\left(5-8+9\right)k}\)
\(\Leftrightarrow\) P = \(\frac{4k}{6k}\)
\(\Leftrightarrow\) P = \(\frac{4}{6}\)= \(\frac{2}{3}\)
cho a nhọn biet sina-cosa=3/5 tinh gia tri cua bieu thuc e=sina*cosa bang
cho pt: x^2-12x+4=0 c hai nghiem phan biet x1,x2. Khong giai pt, hay tinh gia tri cua bieu thuc: T=x1^2+x2^2/canx1+can x2cho pt: x^2-12x+4=0 c hai nghiem phan biet x1,x2. Khong giai pt, hay tinh gia tri cua bieu thuc: T=x1^2+x2^2/canx1+can x2
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
CHO bieu thuc
B=17,58*43+57*17,58/293*A
a)tim gia tri cua bieu thuc Bkhi a=2
b)tinh gia tri a khi B=2
c)tim gia tri so tu nhien ad biet bieu thuc B co gia tri lon nhat ,gia tri lon do la bao nhieu
https://hoc24.vn/cau-hoi/cho-bieu-thuc-pdfracxyztdfracyztxdfracztxydfractxyz-tinh-gia-tri-bieu-thuc-p-biet-dfracxyztdfracyztxdfracztxydfractxyz.3023701210563 vô giúp mình với
a, biet x+y=0
tinh gia tri bieu thuc : M=\(x^4-xy^3+x^3y-y^4-1\)
b, biet xyz=2 va x+y+z=0
tinh gia tri bieu thuc : M= \(\left(x+y\right)\left(y+2\right)\left(x+2\right)\)
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
tinh gia tri bieu thuc
/a+b-c/
biet A= -5 ; B=2;C=1
BIET / LA GIA TRI tuyet doi
Thế a=-5 ; b=2 ; c=1 vào biểu thức |a+b-c| được:
|-5+2-1| = |-4| = 4
Tinh gia tri bieu thuc [m + n ]:p neu m=5,n=19 va p=3 .Vay gia tri bieu thuc la:
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)