Cho a,b,c là các số dương và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).Tìm GTLN của A=abc
Cho a,b,c là các số thực dương và abc=1. Tìm GTLN của \(P=\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\)
\(P=\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\)
Ta có:
\(\frac{1}{ab+a+2}=\frac{1}{ab+1+a+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)\)
\(=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)
Tương tự ta cũng có: \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right),\frac{1}{ca+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{c}{c+1}\right)\)
Cộng lại vế với vế ta được:
\(P\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Dấu \(=\)khi \(a=b=c=1\).
Cho a,b,c là các số thực dương thỏa mãn \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge2\)
Tìm GTLN của biểu thức A = abc
Lớn hơn hoặc bằng hay là bằng?
\(\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)
tương tự rồi nhân theo vế thôi nhé đệ =))
cho a,b,c là các số thực dương thỏa mãn abc=1 Tìm GTLN của \(P=\frac{1}{a+2b+3}+\frac{1}{b+2c+3}+\frac{1}{c+2a+3}\)
Đặt \(a=x^2;b=y^2;c=z^2\)khi đó ta được xyz=1 và biểu thức P viết được thành
\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2x^2+3}+\frac{1}{z^2+2x^2+3}\)
Ta có \(x^2+y^2\ge2xy;y^2+1\ge2y\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\)
Do đó ta được \(\frac{1}{x^2+2y^2+3}\le\frac{1}{2}\cdot\frac{1}{xy+y+1}\)
Chứng minh tương tự ta có:
\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\cdot\frac{1}{yz+z+1};\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot\frac{1}{zx+z+1}\)
Cộng các vế BĐT trên ta được
\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
Ta cần chứng minh \(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}=1\)
Do xyz=1 nên ta được
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{zx}{z+1+zx}+\frac{x}{1+zx+z}+\frac{1}{zx+x+1}=1\)
Từ đó ta được
\(P\le\frac{1}{2}\). Dấu "=" xảy ra <=> a=b=c=1
Cho a, b, c là các số dương và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
Tìm MAX của abc.
Áp dụng bđt Cauchy :
\(\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự : \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân theo vế : \(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\)
Vậy Max abc = 1/8 khi a = b = c = 1/2
Cho các số dương a , b , c \(\ne0\) . TM: a +b + c =abc . Tìm GTLN của bt \(\frac{a}{\sqrt{bc\left(1+A^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}=a\sqrt{\frac{1}{a+b}.\frac{1}{c+a}}\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}\)
Tương tự 2 cái còn lại cộng lại ta đc \(VT\le\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Cach khac
Dat \(P=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Ta co:
\(a+b+c=abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(\Rightarrow xy+yz+zx=1\)
\(\Rightarrow P=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)
Ta lai co:
\(\sqrt{\frac{yz}{1+x^2}}=\sqrt{\frac{yz}{xy+yz+zx+x^2}}=\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)
Tuong tu:
\(\sqrt{\frac{zx}{1+y^2}}\le\frac{1}{2}\left(\frac{z}{y+z}+\frac{x}{x+y}\right)\)
\(\sqrt{\frac{xy}{1+z^2}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
\(\Rightarrow a=b=c=\sqrt{3}\)
Vay \(P_{min}=\frac{3}{2}\)khi \(a=b=c=\sqrt{3}\)
cho 3 số dương a,b,c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) tìm GTLN của M=abc
1. cho a,b,c là 3 số dương thỏa mãn abc=1 . CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
2. tìm GTLN của biểu thức: \(N=\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\)
Cho a,b,c là các số thực dương thay đổi và thoả mãn: \(a+b+c=\frac{3\sqrt{3}}{\sqrt{2}}\) . TÌM GTLN CỦA BIỂU THỨC:
\(M=\frac{1}{a^2+b^2+3}+\frac{1}{b^2+c^2+3}+\frac{1}{c^2+a^2+3}\)
We have:
\(M=1-\frac{1}{3}\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\)
Consider:
\(\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\ge\frac{3}{2}\)
\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\)
Prove:
\(\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\ge\frac{3}{2}\)
\(\Leftrightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge2\left(a^2+b^2+c^2\right)+27\)
Consider:
\(\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+\Sigma_{cyc}ab\)
\(\Rightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab\)
Now we need to prove:
\(4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab=2\Sigma_{cyc}a^2+27\)
\(\Leftrightarrow2\left(a+b+c\right)^2=27\) (not fail)
\(\Rightarrow M\le\frac{1}{2}\)
Sign '=' happen when \(a=b=c=\sqrt{\frac{3}{2}}\)
Cho a,b,c là các số thực dương thỏa \(a+b+c=1\). Tìm GTLN của :
\(P=\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\)
Áp dụng Bđt \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\) ta có:
\(\frac{ab}{c+1}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự:
\(\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{b+a}+\frac{bc}{c+a}\right)\)\(;\)\(\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{c+b}\right)\)
Cộng theo vế ta được:
\(P\le\frac{1}{4}\left[\left(\frac{ab}{b+c}+\frac{ac}{c+b}\right)+\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)+\left(\frac{bc}{b+a}+\frac{ac}{a+b}\right)\right]\)
\(=\frac{1}{4}\cdot\left(a+b+c\right)=\frac{1}{4}\)
Dấu = khi \(a=b=c=\frac{1}{3}\)