\(\Rightarrow\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\) (1)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+c\right)\left(1+a\right)}}\) (2)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)
Từ (1) (2) và (3)
=> \(\frac{1}{1+a}\cdot\frac{1}{1+b}\cdot\frac{1}{1+c}\ge8\sqrt{\frac{\left(abc\right)^2}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\right]^2}}=8\cdot\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
=> \(1\ge8abc\)
=> \(abc\le\frac{1}{8}\)
Vậy GTLN là 1/8 khi x = y=z = 1/2