Tìm x\(\in\)Z để các biểu thức sau nhận giá trị là một số nguyên
\(D=\frac{3}{\sqrt{x}-1}\)
Tìm x\(\in\)Z để các biểu thức sau nhận giá trị là một số nguyên
\(E=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
điều kiện: x>=0 và x khác 1
E=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
muốn E nguyên thì \(\sqrt{x}+1\)={1,-1,-2,2}
\(\sqrt{x}-1=1\)=> x=4\(\sqrt{x}-1=-1\)=>x=0\(\sqrt{x}-1=-2\) VN\(\sqrt{x}-1=2\)=> x=9Vậy giá trị x là{0,4,9} thỏa đề bài
Tìm x\(\in\)Z để các biểu thức sau nhận giá trị là một số nguyên
\(B=\frac{1-2x}{x+3}\)
Để B là số nguyên thì \(-2x+1⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
Giúp minh với chiều nay mình phải nộp rồi.Cảm ơn nha
Tìm số nguyên x để các biểu thức sau nhận giá trị nguyên
B=\(\sqrt{X+1\frac{ }{ }\sqrt{X-3}}\).Tìm số nguyên x để B có giá trị là 1 số nguyên
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
Tìm \(x\in Z\) để biểu thức dưới đây nhận giá trị nguyên:
\(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
a) Cho biểu thức
P= ($\frac{x}{x-1}$- $\frac{1}{\sqrt{x}-1}$- $\frac{1}{\sqrt{x}+1}$).($\frac{4\sqrt{x}-8}{x\sqrt{x}-4x+4\sqrt{x}}$), với x>0, x $\neq$1, x $\neq$4. Tìm các số nguyên x để P nhận giá trị nguyên dương.
b) Cho 3 số thực x,y,z thỏa mãn điều kiện: x+y+z=0 và xyz $\neq$0. Tính giá trị biểu thức
P= $\frac{x^2}{y^2+z^2-x^2}$ +$\frac{y^2}{z^2+x^2-y^2}$ +$\frac{z^2}{x^2+y^2-z^2}$
a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)
Để P nguyên dương thì x-1 thuộc {1;4;2}
=>x thuộc {2;5;3}
b: x+y+z=0
=>x=-y-z; y=-x-z; z=-x-y
\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)
\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)
\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)
Tìm x\(\in\)Z để các biểu thức sau nhận giá trị là một số nguyên
\(C=\frac{x^2+x+1}{x+1}\)
\(C=\frac{x^2+x+1}{x+1}=\frac{x.\left(x+1\right)+1}{x+1}=\frac{x.\left(x+1\right)}{x+1}+\frac{1}{x+1}=x+\frac{1}{x+1}\)
Để C nguyên thì \(\frac{1}{x+1}\) nguyên
=> 1 chia hết cho x + 1
=> \(x+1\inƯ\left(1\right)\)
=> \(x+1\in\left\{1;-1\right\}\)
=> \(x\in\left\{0;-2\right\}\)
Vậy \(x\in\left\{0;-2\right\}\) thỏa mãn đề bài
1.cho A= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). tìm số nguyên x để A có giá trị là số nguyên
2.Tìm GTLN cỉa các biểu thức sau
E= \(\frac{27-2x}{12-x}\); x\(\in\)Z
Tìm \(x\in Z\) để biểu thức sau nhận giá trị nguyên:
\(I=\frac{\sqrt{x}-3}{2}\)
Để I có giá trị nguyên thì \(\sqrt{x}-3⋮2\)
Vì \(\left(3,2\right)=1\)\(\Rightarrow\sqrt{x}\)không chia hết cho 2
\(\Rightarrow\sqrt{x}\in\left\{1;3;5;7;...\right\}\)
\(\Rightarrow x\in\left\{1;9;25;49;...\right\}\)
Vậy \(x\in\left\{1;9;25;49;...\right\}\)
1. Cho biểu thức A= \(\sqrt{4-2x}\)
a) Tìm điều kiện của x để biểu thức có nghĩa.
b) Tìm giá trị của biểu thức khi x=2, x=0,x=1,x=-6,x=-10.
c) Tìm giá trị của biến x để giá trị của biểu thức bằng 0? Bằng 5? Bằng 10?
2. Cho biểu thức P= \(\frac{9}{2\sqrt{x}-3}\)
a) Tìm điều kiện của X để biểu thức P xác định..
b) Tính giá trị của biểu thức khi x=4, x=100
c) Tìm giá trị của x để P=1, P=7
d) Tìm các số nguyên x để giá trị của P cũng là một số nguyên.
3. Cho biểu thức \(\frac{2\sqrt{x}+9}{\sqrt{x}+1}\)
a) Tìm điều kiện xác định của x để biểu thức Q được xác định.
b) Tính giá trị của biểu thức khi x=0,x=1,x=16.
c) Tìm giá trị của x để Q=1,Q=10.
d) Tìm các số nguyên x để giá trị của Q cũng là một số nguyên.
Giải hộ với ạ! Gấp lắm T.T
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
2) a) P xác định \(\Leftrightarrow x\ge0\)và \(2\sqrt{x}-3\ne0\Leftrightarrow\sqrt{x}\ne\frac{3}{2}\Leftrightarrow x\ne\frac{9}{4}\)
b) Thay x = 4 vào P, ta được: \(P=\frac{9}{2\sqrt{4}-3}=\frac{9}{1}=9\)
Thay x = 100 vào P, ta được: \(P=\frac{9}{2\sqrt{100}-3}=\frac{9}{17}\)
c) P = 1 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=1\Leftrightarrow2\sqrt{x}-3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)
P = 7 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=7\Leftrightarrow2\sqrt{x}-3=\frac{9}{7}\)
\(\Leftrightarrow2\sqrt{x}=\frac{30}{7}\Leftrightarrow\sqrt{x}=\frac{15}{7}\Leftrightarrow x=\frac{225}{49}\)
d) P nguyên \(\Leftrightarrow9⋮2\sqrt{x}-3\)
\(\Leftrightarrow2\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Lập bảng:
\(2\sqrt{x}-3\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(\sqrt{x}\) | \(2\) | \(1\) | \(3\) | \(0\) | \(6\) | \(-3\) |
\(x\) | \(4\) | \(1\) | \(9\) | \(0\) | \(36\) | \(L\) |
Vậy \(x\in\left\{1;4;9;0;36\right\}\)