Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hot girl Quỳnh Anh
Xem chi tiết
Nguyễn Thị Anh
17 tháng 9 2016 lúc 22:32

điều kiện: x>=0 và x khác 1

E=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

muốn E nguyên thì \(\sqrt{x}+1\)={1,-1,-2,2}

\(\sqrt{x}-1=1\)=> x=4\(\sqrt{x}-1=-1\)=>x=0\(\sqrt{x}-1=-2\) VN\(\sqrt{x}-1=2\)=> x=9

Vậy giá trị x là{0,4,9} thỏa đề bài
 

Hot girl Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 23:35

Để B là số nguyên thì \(-2x+1⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{-2;-4;4;-10\right\}\)

Minh Gaming
Xem chi tiết
ngonhuminh
24 tháng 10 2016 lúc 10:34

x-3=k^2

x=k^2+3

x+1-k=t^2

k^2+4-k=t^2

(2k-1)^2+15=4t^2

(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5

---giải phương trình nghiệm nguyên với k,t---

TH1. [2(k-t)-1][2(k+t)-1]=-1.15

2(k-t)-1=-1=> k=t

4t-1=15=>t=4    nghiệm (-4) loại luôn

với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận

TH2. mà có bắt tìm hết đâu

x=19 ok rồi

ngonhuminh
24 tháng 10 2016 lúc 10:37

ô hay vừa giải xong mà

x=k^2+3

với k là nghiệm nguyên của phương trình

k^2-k+4=t^2

bắt tìm hết hạy chỉ một

x=19 là một nghiệm 

Scarlett
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 23:10


undefined

Hoài Thu Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2023 lúc 12:03

a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)

Để P nguyên dương thì x-1 thuộc {1;4;2}

=>x thuộc {2;5;3}

b: x+y+z=0

=>x=-y-z; y=-x-z; z=-x-y

\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)

\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)

\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)

\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)

Hot girl Quỳnh Anh
Xem chi tiết
soyeon_Tiểubàng giải
17 tháng 9 2016 lúc 22:09

\(C=\frac{x^2+x+1}{x+1}=\frac{x.\left(x+1\right)+1}{x+1}=\frac{x.\left(x+1\right)}{x+1}+\frac{1}{x+1}=x+\frac{1}{x+1}\)

Để C nguyên thì \(\frac{1}{x+1}\) nguyên

=> 1 chia hết cho x + 1

=> \(x+1\inƯ\left(1\right)\)

=> \(x+1\in\left\{1;-1\right\}\)

=> \(x\in\left\{0;-2\right\}\)

Vậy \(x\in\left\{0;-2\right\}\) thỏa mãn đề bài

Phạm Thị Kim Ngân
Xem chi tiết
My
Xem chi tiết
Stephen Hawking
21 tháng 10 2018 lúc 9:15

Để I có giá trị nguyên thì \(\sqrt{x}-3⋮2\)

Vì \(\left(3,2\right)=1\)\(\Rightarrow\sqrt{x}\)không chia hết cho 2

\(\Rightarrow\sqrt{x}\in\left\{1;3;5;7;...\right\}\)

\(\Rightarrow x\in\left\{1;9;25;49;...\right\}\)

Vậy \(x\in\left\{1;9;25;49;...\right\}\)

Diệp An Nhiên
Xem chi tiết
Diệp An Nhiên
2 tháng 9 2019 lúc 14:11

AI GIẢI HỘ MÌNH K CHO Ạ!!!

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:34

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:40

2) a) P xác định \(\Leftrightarrow x\ge0\)và \(2\sqrt{x}-3\ne0\Leftrightarrow\sqrt{x}\ne\frac{3}{2}\Leftrightarrow x\ne\frac{9}{4}\)

b) Thay x = 4 vào P, ta được: \(P=\frac{9}{2\sqrt{4}-3}=\frac{9}{1}=9\)

Thay x = 100 vào P, ta được: \(P=\frac{9}{2\sqrt{100}-3}=\frac{9}{17}\)

c) P = 1 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=1\Leftrightarrow2\sqrt{x}-3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)

P = 7 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=7\Leftrightarrow2\sqrt{x}-3=\frac{9}{7}\)

\(\Leftrightarrow2\sqrt{x}=\frac{30}{7}\Leftrightarrow\sqrt{x}=\frac{15}{7}\Leftrightarrow x=\frac{225}{49}\)

d) P nguyên \(\Leftrightarrow9⋮2\sqrt{x}-3\)

\(\Leftrightarrow2\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

Lập bảng:

\(2\sqrt{x}-3\)\(1\)\(-1\)\(3\)\(-3\)\(9\)\(-9\)
\(\sqrt{x}\)\(2\)\(1\)\(3\)\(0\)\(6\)\(-3\)
\(x\)\(4\)\(1\)\(9\)\(0\)\(36\)\(L\)

Vậy \(x\in\left\{1;4;9;0;36\right\}\)