Rút gọn : \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}.\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
Rút gọn C = \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}.\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
\(C=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\left[\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right]\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}\left[\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{x\left(x-3\right)\left(x+3\right)}\right]\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{\left(x+3-x\right)\left(x+3+x\right)}{x\left(x-3\right)\left(x+3\right)}\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{3\left(2x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)
=>\(C=\frac{x}{x-3}-\frac{3}{x-3}\)
=>\(C=\frac{x-3}{x-3}\)
=>C=1
Rút gọn : \(\left[\left(x^3-1-\frac{7-x^3}{3+x^3}\right).\frac{4}{x^5+3x^2}\right]:\left[\frac{3x^6-12}{x^9+6x^6+9x^3}.\frac{x}{3x^3+6}\right]\)
Rút gọn A : \(\left[\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right]:\frac{2x}{x^3+x}\)
\(A=\left(\dfrac{x^2-2x+1}{x^2+x+1}-\dfrac{-2x^2+4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)
\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)
Rút gọn biểu thức: \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+9\right)}\right).\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}=\frac{-3\sqrt{x}-3}{2x-8\sqrt{x}+6}\)
Nếu đề ko sai thì đấy là kết quả
cho biết : A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x+2}\)
a, tìm đkxđ của A và rút gọn A
b, tính giá trị của A khi x=3
c, tìm giá trị nguyên của x để A có giá trị nguyên
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
cho A=\(\left(\frac{2}{x^2-3x}-\frac{1}{x-3}\right)\cdot\frac{x^2-6x+9}{x-2}\)
a,Rút gọn A
b,tìm x để A>0
c,khi x>0,x khác 3 hãy tìm MinP=A+3x
1. Chứng minh:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+\frac{1}{5\sqrt{4}}+...+\frac{1}{2016\sqrt{2015}}<\frac{88}{45}\)
2. Rút gọn: A= \(\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}+\frac{2x^2}{13-3x^2}\right)\times\frac{24-12x}{6+13x}\)
3, Cho 2x;3y tỉ lệ nghịch với 3,4;x và z tỉ lệ thuận với 4,5; x-2y+3z=1. Tính x-y-z
4. Tìm x: \(\left(2x-3\right)^2-2\left(3x+1\right)^2=2x\left(x-2\right)+\left(x-1\right)\left(x+2\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn
....................... là còn nữa đấy bạn :))
cho biểu thức
P=\(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
( \(x\ne\pm3;x\ne0\))
a, rút gọn biểu thức P
b, tính giá trị của P tại I x-2 I = 1
c, tìm x để P=2/3
d, tìm x để A nguyên
Rút gọn : \(\frac{x^2+2x-3}{x^2+3x-10}:\frac{x^2+x-6}{x^2-9x+14}:\frac{x^2-4x+3}{x^2+7x+10}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x-7\right)}{\left(x+3\right)\left(x-2\right)}:\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+2\right)\left(x+5\right)}\)
\(=\dfrac{\left(x-1\right)\left(x-7\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x+2\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x-3\right)}\)