Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
aaaaaaaa
Xem chi tiết
Phạm Thế Mạnh
23 tháng 9 2018 lúc 22:47

Bình phương 2 vế ta được:
\(\Rightarrow x^2+5z^2+2\sqrt{5}xz=7y^2.\)

\(\Rightarrow\frac{7y^2-x^2-5z^2}{2xz}=\sqrt{5}\)
Vì x;y;z hữu tỉ nên VT hữu tỉ
mà VP vô tỉ
Vậy không tồn tại x;y;z hữu tỉ thoả mãn điều kiện trên

Kim Taehyung
Xem chi tiết
Thanh Tâm
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Đào Thu Hoà
24 tháng 5 2019 lúc 12:35

Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)

\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)

Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)

                                    \(=\left(x-y+z\right)\left(x+y+z\right)\)

Vì   \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa) 

Kết luận...

Trần Đức
18 tháng 10 2020 lúc 22:12

ảnh đẹp

Khách vãng lai đã xóa
Nguyễn Hoàng Minh
Xem chi tiết
nthv_.
10 tháng 10 2021 lúc 10:07

Tham khảo nha ông:

undefined

Thân thi thu
Xem chi tiết
Hoàng Thị Mai Hương
Xem chi tiết
Lê Quốc Vương
Xem chi tiết
Luật Lê Bá
Xem chi tiết
Nguyễn Anh Quân
19 tháng 11 2017 lúc 20:12

Làm xong bt thầy nguyên chưa cu ? 

Nguyễn Anh Quân
19 tháng 11 2017 lúc 20:12

x=y=z=1

Luật Lê Bá
19 tháng 11 2017 lúc 21:06

câu 6 đề 4 qua điểm nào