Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Binh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 22:24

b: \(B=\sqrt{x^2-8x+18}-1\)

\(=\sqrt{\left(x-4\right)^2+2}-1\)

(x-4)^2+2>=2

=>\(\sqrt{\left(x-4\right)^2+2}>=\sqrt{2}\)

=>B>=căn 2-1

Dấu = xảy ra khi x=4

a: \(D=3+\sqrt{2x^2-8x+33}\)

\(=3+\sqrt{2\left(x^2-4x+\dfrac{33}{2}\right)}\)

\(=\sqrt{2\left(x^2-4x+4\right)+25}+3\)

\(=\sqrt{2\left(x-2\right)^2+25}+3>=5+3=8\)

Dấu = xảy ra khi x=2

Binh
26 tháng 7 2023 lúc 22:22

Cứu

Binh
26 tháng 7 2023 lúc 22:24

Huhu........

 

trần thị ngọc trâm
Xem chi tiết
Đặng Đức Anh
Xem chi tiết
Edogawa Conan
17 tháng 8 2019 lúc 15:19

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

Đặng Đức Anh
17 tháng 8 2019 lúc 15:31

Đúng ko vậy bạn

Athena
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2021 lúc 23:26

b) Ta có: \(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)

c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

 

missing you =
29 tháng 6 2021 lúc 23:50

\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)

\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)

\(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)

\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2

\(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)

dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)

\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)

=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)

dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Trần Văn Thành
Xem chi tiết
Hoàng Thu Huyền
Xem chi tiết
Tớ Đông Đặc ATSM
18 tháng 7 2018 lúc 21:01

a, Vì (2x+1/2)4>= 0

=> (2x+1/2)4-1>= -1

=> Min A =-1 <=> x = -1/4

b, vì -(4/9x-2/15)6<= 0

=> 3-(4/9x-2/15)6<= 3

=> Max B = 3 <=> x=3/10

Trần Thế tiến Thành
Xem chi tiết
lê thanh tùng
Xem chi tiết
Nguyễn Lương Bảo Tiên
10 tháng 9 2015 lúc 22:57

Bài 1

(2x + 9)2 > 0

3(2x + 9)2 > 0

3(2x + 9)2 - 1 > - 1

Vậy GTNN của biểu thức là - 1

Bài 2

(x - a)(x + a) = x2 - 169

x2 - a2 = x2 - 169

a2 = 169

mà a < 0

nên a = - 13

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự