tìm x,y thuộc z
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
tìm x,y thuộc z
a. \(4x^2+3y^2+3x+12y+5=0\)
b.\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
a/ Ta có : \(3y^2+12y+\left(4x^2+3x+5\right)=0\)
Xét \(\Delta'=6^2-3\left(4x^2+3x+5\right)=-12x^2-9x+21\)
Để pt trên có nghiệm thì \(\Delta'\ge0\Leftrightarrow-12x^2-9x+21\ge0\Leftrightarrow-\frac{7}{4}\le x\le1\)
Vì x là nghiệm nguyên nên \(0\le x\le1\)
Do đó x = 0 hoặc x = 1
Nếu x = 0 thì \(y_1=\frac{-6-\sqrt{21}}{3}\) (loại) , \(y_2=\frac{-6+\sqrt{21}}{3}\) (loại)
Nếu x = 1 thì y = -2 (nhận)
Vậy (x;y) = (1;-2)
Giải phương trình nghiệm nguyên không âm: \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25
↔x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0
↔(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0
↔(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0→[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ{(0;−6),(4;−2)...}
\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)
\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)
nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\)
( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )
ta lập bảng :
\(x+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | \(0\) | \(4\) | \(-2\) | \(-6\) |
\(y\) | \(-6\) | \(-2\) | \(4\) | \(0\) |
\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)
tìm các số nguyên ko âm x;y thỏa mãn \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
1,\(\left\{{}\begin{matrix}x^2+xy-3x+y=0\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=22\\xy\left(x-1\right)\left(y-2\right)=1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
câu 1: giải hệ phương trình
\(\left(x+y\right)^2+\left(y+z\right)^4+....+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
\(\left(xy\right)^2+2\left(yz\right)^4+....+100\left(zx\right)^{100}=-[\left(x+y+z\right)+2\left(yz+zx+xy\right)+......+99\left(x+y+z\right)]\)\(\left(\frac{1}{x}+\frac{1}{y}\right)^2+\left(\frac{1}{y^2}+\frac{1}{z^2}\right)^2+...+\left(\frac{1}{x^{99}}+\frac{1}{z^{99}}\right)^2=-\frac{1}{\left(xy\right)^2+2\left(yz\right)^2+.....+99\left(zx\right)^2}\)
tìm x,y,z
Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:
ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\) nên phương trình 1 vô lý
tương tự chứng minh phương trinh 2 và 3 vô lý
vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)
thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm
\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)
Ta dễ dàng nhận thấy tất cả số mũ đều chẵn
\(=>A\ge0\)(1)
Đặt : \(B=-\left(y+z+x\right)\)
\(=>B\le0\)(2)
Từ 1 và 2 \(=>A\ge0\le B\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)
Do \(B=0< =>y+z+x=0\)(3)
\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)
Từ 3 và 4 \(=>x=y=z=0\)
Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}
Đặt :\(\left(xy\right)^2+2\left(yz\right)^4+...+100\left(zx\right)^{100}=A\)
Ta thấy các số mũ đều chẵn
Nên \(A\ge0\left(1\right)\)
Đặt : \(-\left[\left(x+y+z\right)+2\left(yz+zx+xy\right)+...+99\left(x+y+z\right)\right]=B\)
Vì có dấu âm ở trước VT
Nên \(B\le0\left(2\right)\)
Từ 1 và 2 <=> \(A=B=0\)
\(< =>x=y=z=0\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Áp dụng bất đẳng thức AM - GM:
\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).
Áp dụng bất đẳng thức AM - GM ta có:
\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).
Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).
Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)
\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).
Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)
Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)
\(\Rightarrow P\ge\dfrac{15}{2}\).
Vậy...
Áp dụng bất đẳng thức AM - GM:
P≥33√(xy+1)(yz+1)(zx+1)xyz.
Áp dụng bất đẳng thức AM - GM ta có:
xy+1=xy+14+14+14+14≥55√xy44.
Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.
Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412
⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.
Mà xyz≤(x+y+z)327=18
Nên (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258
⇒P≥152.
tìm nghiệm là số tự nhiên
a) \(3^x+112=y^2\)
b) \(\left(x^2+1\right)\left(y^2+1\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
\(\Rightarrow A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(z+x\right)\left(z+y\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
Cho các số thực x,y,z đôi 1 khác nhau và x+y+z=0 tính giá trị
P=\(\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}\)
Do \(x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right)\Rightarrow x^2=\left(y+z\right)^2\Rightarrow4yz-x^2=4yz-\left(y+z^2\right)=-\left(y-z\right)^2\)
Tương tự \(4zx-y^2=-\left(z-x\right)^2\)
\(4xy-z^2=-\left(x-y\right)^2\)
Ta lại có: \(yz+2x^2=yz+x^2-x\left(y+z\right)=yz+x^2-xy-xz=\left(x-y\right)\left(x-z\right)\)
Tương tự: \(zx+2y^2=\left(y-x\right)\left(y-z\right)\)
\(xy+2z^2=\left(y-z\right)\left(y-y\right)\)
\(P=\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y^2\right)}{\left(x-y\right)\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(z-x\right)\left(z-y\right)}\)
\(=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}=1\)