Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Thuy Tien
Xem chi tiết
Mọt sách
23 tháng 4 2018 lúc 21:42

\(A=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)

\(A=2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=2.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(A=2\cdot\frac{4949}{9900}=\frac{4949}{4950}\)

Nguyễn Văn Cường
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 10 2016 lúc 7:42

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{99.100}=\frac{49}{99.100}\Rightarrow A=\frac{49}{2.99.100}\)

Hồ Trúc
Xem chi tiết
Lightning Farron
10 tháng 8 2016 lúc 22:12

\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2S=\frac{1}{2}-\frac{1}{9900}\)

\(2S=\frac{4949}{9900}\)

\(S=\frac{4949}{19800}\)

Vương Hàn
11 tháng 8 2016 lúc 8:55

Ta xét : \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)

\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)

...

\(\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)

Ta có : 2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

=> 2S = \(\frac{1}{1.2}-\frac{1}{99.100}\)

=> 2S = \(\frac{4949}{9900}\)

=> S = \(\frac{4949}{19800}\)

Nguyễn Kim Thành
10 tháng 3 2017 lúc 14:15

2S=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{98.99.100}\)

2S= \(1-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)2S= 1- \(\dfrac{1}{100}\)

2S= \(\dfrac{99}{100}\)

S= \(\dfrac{99}{100}.\dfrac{1}{2}\)

S=\(\dfrac{198}{100}\)

Sagittarus
Xem chi tiết
Le Thi Khanh Huyen
12 tháng 6 2015 lúc 21:49

Coi \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2A=2x\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)

\(=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(=\frac{4950}{9900}-\frac{1}{9900}\)

\(=\frac{4949}{9900}\)

 

OoO nhóc ngu ngơ OoO dễ...
28 tháng 10 2017 lúc 13:18

các bn làm đúng rồi

tk mk nha

thnak

thien ty tfboys
12 tháng 6 2015 lúc 21:48

Gọi tổng trên là A

A=1/1.2.3+1/2.3.4+1/3.4.5+...1/98.99.100

Ta xét :

1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100  

tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2).

Do đó:  2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100

 = (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100)  

= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100  

= 1/1.2 - 1/99.100  

= 1/2 - 1/9900  

= 4950/9900 - 1/9900  

= 4949/9900.  

Vậy A = 4949 / 9900

 

Trương Quỳnh Trang
Xem chi tiết
Đào Đức Mạnh
30 tháng 7 2015 lúc 15:50

A=1/1.2.3+1/2.3.4+...+1/98.99.100

2A=2/1.2.3+2/2.3.4+...+2/98.99.100

2A=1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100

2A=1/1.2-1/99.100

2A=1/2-1/9900

2A=4949/9900

A=4949/19800

phạm văn tuấn
5 tháng 4 2018 lúc 18:55

A=1/1.2.3+1/2.3.4+...+1/98.99.100

2A=2/1.2.3+2/2.3.4+...+2/98.99.100

2A=1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100

2A=1/1.2-1/99.100

2A=1/2-1/9900

2A=4949/9900

A=4949/19800

pham dang vu
12 tháng 4 2018 lúc 4:45

A=1/1.2.3+1/2.3.4+....+1/98.99.100

2A=2/1.2-2/2.3.4+...+2/98.99.100

2A=1/1.2-1/2.3+1/2.3-1/3.4+....+1/98.99-1/99.100

2A=1/1.2-1/99.100

2A1/2-1/9900

2A=4949/9900

A=4949/19800

Vân Anh
Xem chi tiết
Vương Hải Nam
11 tháng 4 2019 lúc 20:59

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

Phạm Thu Huyền
Xem chi tiết
IQ 200000000000000000000...
14 tháng 4 2019 lúc 21:00

A=1/2 *(1/1*2-1/2*3+1/2*3-1/3*4+........+1/98*99-1/99*100)

=1/2*(1/2-1/99*100)

=1/2*(4950-1/9900)

=4950/19800

Huỳnh Quang Sang
14 tháng 4 2019 lúc 21:01

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(A=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{99\cdot100}\right]=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

hồng miêu
14 tháng 4 2019 lúc 21:05

A=1/2.(2/1.2.3+2/2.3.4+...+2/98.99.100

=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100

Đinh Đức Hùng
Xem chi tiết
Jungkook Oppa
30 tháng 1 2016 lúc 12:06

Kết bạn vs mk nha !!!

Nguyễn Thị Kim Anh
Xem chi tiết
Lưu Trường An
18 tháng 2 2016 lúc 11:02

2A=2(1/1.2.3+1/2.3.4+...+1/98.99.100)

2A=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-...+1/98.99-1/99.100

2A=1/1.2-1/99.100

2A=4949/9900

A=4949/9900:2

A=4949/19800

                                         Vậy A=4949/198000

Video ngắn
9 tháng 3 2021 lúc 18:59

Lưu Trường An làm đúng rồi

Khách vãng lai đã xóa