Tìm \(\overline{xy}\) thỏa
xyxy =\(xy^2+yx^2\)
Tìm x,y biết:
x+y=9 \(\overline{xy}+\overline{yx}=99\) và \(\overline{0,xy\left(x\right)}+\overline{0,yx\left(y\right)}=0,4\left(5\right)\)
Tìm số có hai chữ số \(\overline{xy}\)
Biết rằng : \(\overline{xyxy}\) =\(\overline{xy^2}\) +\(\overline{yx^2}\)
Kiểm tra giùm nha! cảm ơn trước
Hình như thầy cho đề sai : \(\overline{xxyy}=\overline{xx}^2+\overline{yy}^2\)mới đúng ko chắc nha
Ta có:
\(\overline{xyxy}\)=\(\overline{xy}\).100+\(\overline{xy}\)
Hay:\(\overline{xyxy}\)=\(\overline{xy}\).101
Mà theo bài ra ta có:
\(\overline{xyxy}\)=\(\overline{xy^2}\)+\(\overline{yx^2}\)
Hay:\(\overline{xyxy}\)=\(\overline{xy}\).\(\overline{xy}\)+\(\overline{yx}\).\(\overline{yx}\)
\(\Rightarrow\)101=\(\overline{xy}\)+\(\overline{yx}\).\(\overline{yx}\)
Đến đây mk chịu,còn ko biết đúng ko nữa,mk đăng cho bn xem đúng ko thôi.
Khả năng sai cực cao
Tìm xy thỏa xyxy= xy^2 + yx^2
Tìm các số tự nhiên x,y sao cho \(\overline{xy}^x=\overline{yx}^y\)
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
1)tìm \(\overline{xy}\)biết \(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)
Ta có: \(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)
\(\Leftrightarrow2\left(10x+y\right)=x^2+4x+4+y^2+8y+16\)
\(\Leftrightarrow x^2-16x+y^2+6y+20=0\)
\(\Leftrightarrow\left(x-8\right)^2+\left(y+3\right)^2=53\)
Ta thấy do x, y là các chữ số nên (x - 8)2 và (y + 3)2 đều là các số chính phương.
Ta có 53 = 49 + 4 và \(y+3\ge3\)
Vậy nên \(\hept{\begin{cases}x-8=2\\y+3=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=4\end{cases}}\left(ktmđk\right)\)
Vậy không tồn tại số cần tìm.
1) Tìm \(\overline{xy}th\text{ỏa}:\overline{xxyy}=\overline{xx}^2+\overline{yy}^2\)