chứng minh
nếu \(\sqrt{a}< \sqrt{b}\) thì a<b
Chứng minh: với a, b không âm
a) Nếu a<b thì \(\sqrt{a}< \sqrt{b}\);
b) Nếu \(\sqrt{a}< \sqrt{b}\) thì a<b
chứng minh rằng,với hai số a,b thỏa mãn a>b>0 thì \(\sqrt{a}\)-\(\sqrt{b}\)<\(\sqrt{a-b}\)
chứng minh rằng,với hai số a,b thỏa mãn a>b>0 thì \(\sqrt{a}-\sqrt{b}\)<\(\sqrt{a-b}\)
\(\sqrt[]{a}-\sqrt[]{b}< \sqrt[]{a-b}\left(a>b>0\right)\)
\(\Leftrightarrow\left(\sqrt[]{a}-\sqrt[]{b}\right)^2< \left(\sqrt[]{a-b}\right)^2\)
\(\Leftrightarrow a+b-2\sqrt[]{ab}< a-b\)
\(\Leftrightarrow2\sqrt[]{ab}-2b>0\)
\(\Leftrightarrow2\sqrt[]{b}\left(\sqrt[]{a}-\sqrt[]{b}\right)>0\left(1\right)\)
mà \(a>b>0\)
Nên \(\left(1\right)\) luôn luôn đúng
Vậy \(\sqrt[]{a}-\sqrt[]{b}< \sqrt[]{a-b}\)
Cho a,b không âm . Chứng mnh
a, Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b, Nếu \(\sqrt{a}< \sqrt{b}\) thì a<b
a/ \(a< b\Leftrightarrow a-b< 0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)
Mà \(\sqrt{a}+\sqrt{b}>0\Rightarrow\sqrt{a}-\sqrt{b}< 0\Rightarrow\sqrt{a}< \sqrt{b}\)
b/ \(\sqrt{a}< \sqrt{b}\Leftrightarrow\sqrt{a}-\sqrt{b}< 0\)
Vì a,b là các số dương , do đó nhân cả hai vế của bđt trên với \(\sqrt{a}+\sqrt{b}\) được :
\(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\Leftrightarrow a-b< 0\Leftrightarrow a< b\)
a) Có: a<b
=> \(\sqrt{a}< \sqrt{b}\) (vì a,b là các số dương)
b) \(\sqrt{a}< \sqrt{b}\)
\(\Leftrightarrow\left(\sqrt{a}\right)^2< \left(\sqrt{b}\right)^2\)
\(\Leftrightarrow a< b\)
Chứng minh rằng nếu a,b>0 thì \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
Áp dụng BĐT cô-si, ta được:
\(\hept{\begin{cases}\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{cases}}\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\) (đpcm)
Vậy....
Biến đổi tương đương ta được :
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{ab}\le a-\sqrt{ab}+b\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( đúng với đk )
a) so sánh \(\sqrt{36-25}và\sqrt{36}-\sqrt{25}\)
b) chứng minh với a>0, b>0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
a) \(\sqrt{36-25}=\sqrt{11}\)
\(\sqrt{36}-\sqrt{25}=6-5=1\)
Suy ra \(\sqrt{36-25}>\sqrt{36}-\sqrt{25}\)
a,\(\sqrt{36-25}=-1\)
\(\sqrt{36}-\sqrt{25}=1\)
Vậy: \(\sqrt{36-25}< \sqrt{36}-\sqrt{25}\)
a. ta có: \(\sqrt{36-25}=\sqrt{11}\) (1)
\(\sqrt{36}-\sqrt{25}=6-5=1\)(2)
từ (1) và (2) suy ra : \(\sqrt{36-25}>\sqrt{36}-\sqrt{25}\)
Cho hai số a , b không âm . Chứng minh
a, Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b, Nếu \(\sqrt{a}< \sqrt{b}\) thì a < b
a) \(a< b\)
\(\rightarrow\sqrt{a}^2< \sqrt{b}^2\)
\(\rightarrow\sqrt{a}< \sqrt{b}\)
b) \(\sqrt{a}< \sqrt{b}\)
\(\rightarrow\sqrt{a}^2< \sqrt{b}^2\)
\(\rightarrow a< b\)
Ko chắc lắm ^^!
Cho hai số a , b không âm . Chứng minh :
a) Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b) Nếu \(\sqrt{a}< \sqrt{b}\) thì a < b
\(a,\)\(a< b\Rightarrow a-b< 0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)
Vì \(\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)\(\Rightarrow\sqrt{a}< \sqrt{b}\)\(\left(đpcm\right)\)
\(b,\)\(\sqrt{a}< \sqrt{b}\)\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)
Ta có :\(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=a-b\)
Mà \(\sqrt{a}-\sqrt{b}< 0\); \(\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow a-b< 0\)\(\Leftrightarrow a< b\)
Chứng minh rằng : Với a > b > 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
từ a>b >0 <=> \(\sqrt{ab}>b\)<=> \(2b-2\sqrt{ba}< 0\)<=> a-a +b+b -\(2\sqrt{ab}\)< 0<=> a-\(2\sqrt{ab}\)+b < a- b hay \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
Chứng minh rằng nếu a,b>0 thì ta luôn có
\(\frac{a+2\sqrt{ab}+9b}{\sqrt{a}+3\sqrt{b}-2\sqrt[4]{ab}}-2\sqrt{b}=\left(\sqrt[4]{a}+\sqrt[4]{b}\right)^2\)