Chứng minh số sau không phải là số chính phương
1 + 5m + 8n (với m;n là số tự nhiên)
Chứng minh số sau không phải là số chính phương
1 + 5m + 8n (m;n là số tự nhiên)
Bài 1 : Các số sau có phải chính phương không?
a, 3 + 32 + 33 + ... + 320
b, 100!
c,20012001
d, abab
b, abcabc
c, ababab
Bài 2 : Chứng minh rằng tổng bình phương của hai số lẻ bất kì không phải số chính phương.
Bài 3 : Chứng minh rằng 192n + 5n + 2000 với n \( \in\) ℕ không phải số chính phương.
Bài 4 : Chứng minh rằng 1 + 5m + 8n với m,n \(\in\) ℕ không phải số chính phương.
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)
hay \(n^2< n^2+n+1< \left(n+1\right)^2\)
Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa hai số ấy nên không thể là số chính phương.
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Với n nguyên dương thì
n2 < n2 + n < n2 + 2n
<=> n2 < n2 + n + 1 < n2 + 2n + 1
<=> n2 < n2 + n + 1 < ( n + 1 )2
Vì n2 + n + 1 kẹp giữa 2 SCP liên tiếp nên n2 + n + 1 không phải là SCP ( đpcm )
Chứng minh số x=26^n+1 có kết quả không phải là số chính phương với mọi n là số tự nhiên
x co tan cung =7 =hoac 2 => ko la dau chinh phuong
SCP tan cung (0,1,4,5,6,9)
Chứng minh rằng 10n + 8 không phải là số chính phương với n là số tự nhiên.
Do n \(\in\) N* nên 10n + 8 = (...0) + 8 = (...8) => 10n + 8 có chữ số tận cùng là 8 nên không thể là số chính phương (bình phương của một số tự nhiên).
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương