Cho hình vẽ dưới:
a/Tính góc N?
b/Tính góc HMN?
Giúp mk vs
Cho tam giác ABC, vẽ AH vuông góc với BC (H thuộc BC). Biết AB = 10cm, AH = 8cm, HC = 6cm
a) Tính AC và BH?
b) Chứng minh: góc ABC bằng góc ACB.
c) Vẽ HM vuông góc với AB, HN vuông góc với AC (M thuộc AB, N thuộc AC). Chứng minh: tam giác HMN là tam giác cân.
a, Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{64+36}=10\)cm
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A
mà AH là đường cao đồng thời là đường trung tuyến
=> HC = HB = 6 cm
b, Vì tam giác ABC cân tại A => ^ABC = ^ACB
c, Vì tam giác ABC cân tại A, AH đồng thời là đường phân giác
=> ^BAH = ^HAC
Xét tam giác AMH và tam giác ANH có :
^AMH = ^ANH = 900
AH _ chung
^BAH = ^NAH ( cmt )
Vậy tam giác AMH = tam giác ANH ( ch - gn )
=> MH = NH ( 2 cạnh tương ứng )
Xét tam giác HMN có MH = NH ( cmt )
=> tam giác HMN cân tại H
Cho góc AOB và góc BOC là 2 góc kề bù, biết góc BOC bằng 5 lần góc AOB.
a/ Tính số đo mỗi góc
b/ Gọi OD là tia phân giác của góc BOC. Tính góc AOD
c/ Nếu cho n tia phân biệt gốc O thành 171 góc. Tính n tia. Tính số tia cần vẽ thêm
Các bạn giúp mk với ! (câu a và câu b mk làm được rồi câu c mk ko bt làm , nhớ vẽ hình nha)
c) Chọn 1 tia bất kì, từ tia đó kẻ tới n - 1 tia còn lại ta đc n - 1 góc mà có tất cả n tia => có: n.(n - 1) góc nhưng như vậy số góc đã đc tính 2 lần => số góc thực tế là: n.(n - 1)/2 = 171 (góc)
=> n.(n - 1) = 171 x 2
=> n.(n - 1) = 18.19
=> n = 19
... bn tự lm típ, đến đây thì dễ rùi
Ủng hộ mk nha ^_-
c) Chọn 1 tia bất kì, từ tia đó kẻ tới n - 1 tia còn lại ta đc n - 1 góc mà có tất cả n tia => có: n.(n - 1) góc nhưng như vậy số góc đã đc tính 2 lần => số góc thực tế là: n.(n - 1)/2 = 171 (góc)
=> n.(n - 1) = 171 x 2
=> n.(n - 1) = 18.19
=> n = 19
mọi người giúp mk câu này vs ạ
Bài 2. Cho tam giác ABC vuông tại A, biết góc B= 60 độ
a/ Tính góc C.
b/ Vẽ AH vuông góc BC (H thuộc BC). Tính góc BAH; góc CAH
a: \(\widehat{C}=30^0\)
b: \(\widehat{BAH}=30^0;\widehat{CAH}=60^0\)
Cho tam giác ABC vuông tại B. Gọi M là trung điểm của AC. Qua M kẻ MF vg góc vs AB (F thuộc AB),
ME vg góc vs BC (E thuộc BC).
a) Chứng minh tứ giác BEMF là hình chữ nhật
b) Gọi N là điểm đối xứng với M qua F. Chứng minh tứ giác BMAN là hình thoi
c) Cho AB = 3cm, BC = 4cm. Tính diện tích tứ giác BEMF.
vẽ cả hình giúp mk nha. mk cảm ơn trc
nhầm, 2.1,5 = 3, diện tích = 3 nhé :v
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c, MF là đtb của tam giác ABC (câu a)
=> MF = BC/2 ; BC = 4 (Gt)
=> MF = 2
tương tự tính ra BF = 1,5
=> S BEMF = 4.1,5 = 6
1) Cho tam giác ABC vuông góc tại A có góc B bằng 60 độ . Vẽ
tia phân giác góc A cắt BC tại D . Kẻ AH vuông góc BC Tính góc C
Vẽ giùm mk cái hình lun chứ mk ko biết vẽ hình (TT)
Giúp mk vs nhé , hậu tạ sau ^_^
Bạn này, chỗ mình kí hiệu vuông góc là H nhé!
Ta có: góc BAH + B= 90 độ (t/c góc vuông)
=> BAH = 90 - B
= 90 - 60
= 30
Lại do tg ABC vuông tại A nên góc BAC = 90 độ
Mà góc BAH + HAC = BAC = 90 độ
=> 30 + HAC = 90
=> HAC= 90 - 30
= 60
Lại có góc HAC + C = 90( t/c góc vuông)
=> 60 + C = 90
=> C = 90 - 60
= 30
Vậy góc C bằng 30 độ.
Chỗ nào thắc mắc hỏi mk nha!
Cho tam giác ABC vẽ AH vuông góc BC taih H . Lấy D,E sao cho D ddpos xứng với H,E đối xứng vs H qua AC . Gọi giao điểm của DE vs AB và AC lần lượt là M,N
a, C/m tam giác AMD=tam giác AMH
b, C/m AD=AE
c, C/m AH là p/giác góc MHN
Vẽ giúp mk hình vs đc k ạ
giúp mình vẽ hình bài này vs. mk k biết vẽ. ai vẽ mk sẽ tik cho bằng 3 nick mk có.
cho hình thang ABCD có góc A = góc D = 90 độ, AB//CD. AB>CD biết AB=BC=2CD
a. chứng minh AC=BC
b. tính góc ABC và BCD
cho góc nhọn xOy. Trên Oy lấy 1 điểm M. Từ M kẻ MN vuông góc vs x tại N. Từ N kẻ NP vuông góc vs Oy tại P . Từ P kẻ PQ vuông góc vs Ox tại Q ; từ Q kẻ QE vuông góc vs Oy tại E
a, Trg hình vẽ có bn cặp góc // vs nhay
b, Bt OQE = 40 hãy tính soos đo của các góc nhọn có trg hình vẽ trừ xOy
Cho đường tròn tâm (O;R) dây AB cố định ( AB < 2R) và C là một điểm tùy ý trên cung lớn AB ( C ko trùng A,B và CA khác vẽ đường kính CD. Vẽ CH vuông góc vs AB tại H . G ọi M,N lần lượt là hình chiếu của A,B lên CD. CMR:
A) tứ giác CMHA nội tiếp , tìm tâm G của đường tròn này
b) HM vuông góc vs BC
C) tam giác HMN đồng dạng vs tam giác CAB
D) khi C di động trên cung lớn AB thì tâm đường tròn ngoại tiếp tam giác HMN là một điểm cố định
a,b,c làm như bạn trên nhé. Tuy nhiên câu d, cách của bạn đó làm dài và k hay, mình làm cách khác:
Mình mượn tạm hình vẽ của bạn đó luôn :))))
Gọi I là trung điểm của AB. vì dây AB cố định (gt) => I cố định
=> \(OI\perp AB\)(Quan hệ vuông góc giữa đường kính và dây cung) => \(\widehat{OIA}=90^o\)(1)
Do \(AM\perp CD\)tại M (gt) => \(\widehat{OMA}=90^o\)(2)
Từ (1) và (2) => Tứ giác OMIA là tứ giác nội tiếp (DHNB) => \(\widehat{IMN}=\widehat{OAI}=\widehat{OAB}\)(cùng bù với \(\widehat{OMI}\)) (3)
Lại có: \(\widehat{OIB}=\widehat{ONB}=90^o\)=> tứ giác OINB là tứ giác nội tiếp(DHNB) => \(\widehat{INO}=\widehat{INM}=\widehat{OBI}\)(Cùng chắn \(\widebat{OI}\)) = \(\widehat{OBA}\)(4)
\(\Delta OAB\)Cân tại O do OA=OB=R => \(\widehat{OAB}=\widehat{OBA}\)(t/c) (5)
Từ (3),(4) và (5) => \(\widehat{INM}=\widehat{IMN}\Rightarrow\Delta IMN\)cân tại I (DHNB) => IM =IN (đ/n) (6)
Do CMHA nội tiếp (cmt) => \(\widehat{IHM}=\widehat{ACM}=\widehat{ACO}\)(Cùng bù với \(\widehat{AHM}\)) (7)
Ta có: \(\widehat{IMH}=\widehat{NMH}-\widehat{IMN}\)mà \(\widehat{NMH}=\widehat{CAH}=\widehat{CAB}\)(Cùng bù \(\widehat{CMH}\))
\(\widehat{IMN}=\widehat{INM}=\widehat{INO}=\widehat{IBO}=\widehat{ABO}=\widehat{OAB}\)(CMT) => \(\widehat{IMH}=\widehat{CAB}-\widehat{OAB}=\widehat{CAO}\)(8)
Mặt khác \(\Delta OAC\)Cân tại O do OA=OC=R => \(\widehat{CAO}=\widehat{ACO}\)(9)
Từ (7),(8) và (9) => \(\widehat{IHM}=\widehat{IMH}\Rightarrow\Delta IMH\)cân tại I (DHNB) => IM = IH (đ/n) (10)
Từ (6) và (10) => IM = IH = IN => I là tâm đường tròn ngoại tiếp \(\Delta HMN\)(I cố định) => Đpcm
a) Xét tứ giác CMHA có: ^CMA=^CHA=900 => Tứ giác CMHA nội tiếp đường tròn
Dựa theo tính chất đừng trung tuyến trong tam giác vuông, ta tìm được tâm G của đường tròn ngoại tiếp tứ giác CMHA là trung điểm của AC.
b) Do tứ giác CMHA nội tiếp (G) => ^ACM+^AHM=1800. Mà ^AHM+^MHB=1800
=> ^ACM=^MHB hay ^ACD=^MHB (1)
Ta thấy tứ giác ACBD nội tiếp (O) => ^ACD=^ABD (2)
Từ (1) và (2) => ^MHB=^ABD. Mà 2 góc này nằm ở vị trí so le trg nên HM // BD (3)
Ta có: Đương tròn (O) có đường kính CD, B thuộc cung CD => ^CBD=900
=> BD vuông góc với BC (4)
Từ (3) và (4) => HM vuông góc với BC (đpcm).
c) Ta có tứ giác CMHA nội tiếp (G) => ^CAH+^CMH=1800. Mà ^CMH+^HMN=1800
=> ^CAH=^HMN hay ^CAB=^HMN
Chứng minh tương tự phần a ta được tứ giác CHNB nội tiếp đường tròn
Từ đó suy ra ^CNH=^CBH hay ^MNH=^CBA
Xét \(\Delta\)HMN và \(\Delta\)CAB: ^CAB=^HMN; ^MNH=^CBA (cmt)
=> \(\Delta\)HMN ~ \(\Delta\)CAB (g.g) (đpcm).
d) Gọi giao điểm của đường tròn ngoại tiếp tâm I \(\Delta\)HMN với AM và AB lần lượt là R và L
Dễ thấy tứ giác HRMN nội tiếp (I) => ^HNM+^HRM=1800. Mà ^ARH+^HRM=1800
=> ^HNM=^ARH hay ^CNH=^ARH (^HNM=^CNH)
Tứ giác CMHA nội tiếp (G) => ^MAH=^MCH hay ^RAH=^NCH
Xét \(\Delta\)AHR và \(\Delta\)CHN: ^CNH=^ARH; ^NCH=^RAH => \(\Delta\)AHR ~ \(\Delta\)CHN (g.g)
=> \(\frac{AH}{CH}=\frac{HR}{HN}\)(5)
Dễ thấy: ^AHR=^CHN => ^AHC+^CHR=^CHR+^RHN => ^AHC=^RHN
Mà ^AHC=900 => ^RHN=900
Tứ giác CHNB nội tiếp đường tròn => ^HBN=^HCN hay ^LBN=^HCN
Lại có: Tứ giác HMLN nội tiếp I => ^HLN=^HMN => 1800-^HLN=1800-^HMN
=> ^NLB=^HMC
Theo t/c góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung => HMC=^NHC=> ^NLB=^NHC
Xét \(\Delta\)CHN và \(\Delta\)BLN: ^HCN=^LBN; ^NHC=^NLB (cmt) => \(\Delta\)CHN ~ \(\Delta\)BLN (g.g)
=> \(\frac{BL}{CH}=\frac{LN}{HN}\)(6)
Xét (I) có đường kính HL; R thuộc cung HL => ^HRL=900 . Tương tự ta có: ^HNL=900
Xét tứ giác HRLN: ^HRL=^HNL=^RHN=900 (cmt) => Tứ giác HRLN là hình chữ nhật
=> HR=LN (2 cạnh đối) (7)
Từ (5); (6) và (7) => \(\frac{AH}{CH}=\frac{BL}{CH}\)=> \(AH=BL\)
I là trung điểm HL => IH=IL => IH+AH=IL+BL => AI=BI => I là trung điểm của AB
Do dây cung AB cố định => Trung điểm I của AB là điểm cố định.
Mà I là tâm đường tròn ngoại tiếp \(\Delta\)HMN
Suy ra tâm đường tròn ngoại tiếp \(\Delta\)HMN là điểm cố định khi C di động trên cung lớn AB (đpcm).
vẽ hình theo cách diễn đạt bằng lời sau :
a, Vẽ đường trung trực cua m của đoạn thẳng AB có độ dài 6 cm , C là điểm thuộc m .Gọi Cx là tia đối của tia CA, Cn là tia phân giác của góc BCx
b, Cho tam giác ABC. Vẽ AH vuông góc vs BC ( H thuộc BC ). Từ H vẽ HM song song vs AB ( M thuộc AC),vẽ HN sog sog vs AC (N thuộc AB )
giúp mk vs mk sắp KT rồi