Phân tích thành nhân tử:
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
\(x^4-7x^3+14x^2-7x+1\)
\(x^{12}+x^6+1\)
Phân tích đa thức thành nhân tử:
a. \(2x^3-x^2+5x+3\)
b. \(x^3+5x^2+8x+4\)
c. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
d. \(4x^4+1\)
e. \(x^4-7x^3+14x^2-7x+1\)
mk ghi đáp án, còn lại bạn tự biến đổi
a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
mk làm chi tiết theo yêu của của người hỏi đề:
a) \(2x^3-x^2+5x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)
\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
d) \(4x^4+1=4x^4+4x^2+1-4x^2\)
\(=\left(2x^2+1\right)^2-4x^2=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1\)
\(=\left(x^4-3x^3+x^2\right)-\left(4x^3-12x^2+4x\right)+\left(x^2-3x+1\right)\)
\(=x^2\left(x^2-3x+1\right)-4x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)
\(=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
Bài 1: Phân tích đa thức thành nhân tử:
a) \(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(a+c\right)\)
b) \(A=\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
c) B=\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-5\right)\)
d) C=\(x^3-7x-6\)
e) D=\(\left(x^2-3\right)^2+16\)
f) E=\(x^5+x+1\)
Bài 2: Phân tích......
a) A=\(6x^2-11x+3\)
b) B=\(2x^2+3x-27\)
c) C=\(2x^2-5xy-3y^2\)
Bài 3: Phân rích....
a) A= \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
b) B=\(x^2+xy+y^2-x-y-12\)
c) C=\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
d) D=\(x^2-2x+3\)
e) E=\(x^3-7x+6\)
Bài 4: Cho A=\(n^3\left(n^2-7\right)^2-36n\)
a)Phân tích A thành nhân tử
b)Chứng minh rằng: A chia hết cho 5040 với n \(\in\) N
Các bn giải nhanh nha, 4 h mình phải đi học r!!! Cảm ơn Các bn!!!
Bài 2:
a)A= \(6x^2\)\(-11x+3\)
<=>A=\(6x^2\)\(-2x-9x+3\)
<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)
=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)
<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)
=>A=(3x-1)(2x+3)
phân tích đa thức thành nhân tử:
a) \(\frac{1}{m}\left(x^2+y^2\right)-mx^2y^2\)
b) \(x^3-7x-6\)
c) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Phân tích các đa thức sau thành nhân tử
a) \(4x^4+4x^3+5x^2+2x+1\)
b) \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-3\)
c) \(\left(x-2\right)^2\left(2x-5\right)\left(2x-3\right)-5\)
d) \(x^4+6x^3+7x^2+6x+1\)
e) \(\left(x+2\right)\left(x-4\right)\left(x+6\right)\left(x-12\right)+36x^2\)
f) \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
Bài 1 : Phân tích đa thức thành nhân tử
\(a,5x\left(x-2y\right)+2\left(2y-x\right)^2\)
\(b,7x\left(y-4\right)^2-\left(4-x\right)^3\)
\(c,\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
Phân tích đa thức thành nhân tử:
\(a\left(b^2+c^2\right)+b\left(c^2+b^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
Phân tích đa thức thành nhân tử:
\(A=\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
\(B=\left(x^2+4x-3\right)^2-5x\left(x^2+4x-3\right)+6x^2\)
\(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+14x^2\)
a) \(^{ }\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
b) \(^{ }8\left(x-2\right)-3\left(x^2-4x-5\right)-5x^2\)
c) \(^{^{ }}\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
a: Ta có: \(\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=8\left(7x+4\right)\)
=56x+32
b: Ta có: \(8\left(x-2\right)^2-3\left(x^2-4x-5\right)-5x^2\)
\(=8x^2-32x+32-3x^2+12x+15-5x^2\)
\(=-20x+47\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
\(=x^3+3x^2+3x+1-x^3+1-3x^2-3x\)
=2
Phân tích đa thức thành nhân tử
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)