tìm a,b thuoc N:ab-3a-2b=0
Cho tỉ lệ thức 3a+2b+c/a+2b-c=3a+2b+c/a-2b-c (b≠0)chứng minh a+c =0
Cho tỉ lệ thức 3a+2b+c/a+2b-c=3a+2b+c/a-2b-c (b≠0)chứng minh a+c =0
\(\dfrac{ }{ }\)
cho 3a+2b+c/a+2b-c=3a-2b+c/a-2b-c và b ko =0 CMR a=c=0 hộ mik nha!
tìm phân số a/b
biết 3a - 2b = 0 và a, b bé nhất
Biết rằng a,b,c thuộc z. Hỏi 3 số 3a^2 .b .c^3 và -2a^3 .b^5 .c và -3a^5 . b^2 .c^2 có thể cùng âm không ?
Cho tích -2a^5 và 3a^2b^6 cùng dấu Tìm dấu của a ?
Cho a và b trái dấu , 3a^2b^1890 và - 19a^5b^1890 cùng dấu . Xác định dấu của a va b
Cho x thuoc z và E = ( 1- x ) ^4 . ( -x) Với điều kiện nào của x thì E = 0 ; E > 0 ; E < 0
Giúp mình nhanh nhé mình đang cần gấp trình bày càng chặt chẽ nữa nhé mình ko bít trình bày
THANKS MỌI NGƯỜI NHÌU
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)
cho a;b;c > 0, tìm min :
\(P=\dfrac{a}{2b+3c}+\dfrac{b}{2c+3a}+\dfrac{c}{2a+3b}\)
\(P=\dfrac{a}{2b+3c}+\dfrac{b}{2c+3a}+\dfrac{c}{2a+3b}\left(a;b;c>0\right)\)
\(\Leftrightarrow P=\dfrac{a^2}{2ab+3ac}+\dfrac{b^2}{2bc+3ab}+\dfrac{c^2}{2ac+3bc}\)
Áp dụng bất đẳng thức \(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)
\(\Leftrightarrow P\ge\dfrac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}\left(1\right)\)
Theo bất đẳng thức Cauchy :
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\left(1\right)\Leftrightarrow P=\dfrac{a^2}{2ab+3ac}+\dfrac{b^2}{2bc+3ab}+\dfrac{c^2}{2ac+3bc}\ge\dfrac{ab+bc+ca+2\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}\)
\(\Leftrightarrow P\ge\dfrac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy \(Min\left(P\right)=\dfrac{3}{5}\left(tại.a=b=c\right)\)
Bổ sung chứng minh Bất đẳng thức :
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)
Theo BĐT Bunhiacopxki :
\(\left(\dfrac{a}{\sqrt[]{m}}\right)^2+\left(\dfrac{b}{\sqrt[]{n}}\right)^2+\left(\dfrac{c}{\sqrt[]{q}}\right)^2.\left[\left(\sqrt[]{m}\right)^2+\left(\sqrt[]{n}\right)^2+\left(\sqrt[]{q}\right)^2\right]\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)
Cho \(a>0\) , \(b>0\) thỏa mãn: \(\log_{3a+2b+1}\left(9a^2+b^2+1\right)+\log_{6ab+1}\left(3a+2b+1\right)=2\) .
Tính giá trị của biểu thức: \(P=a+2b\)
\(a;b>0\Rightarrow3a+2b+1>1\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến
Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)
\(\Rightarrow18a^2+1=3a+6a+1\)
\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)
cCau 1
Cho biet 3a-2b chia het cho 11[a,b thuoc Z]
Chung minh 2a-5b chia het cho11
Cau 2
Tìm N nhỏ nhất sao cho chia 7du 6;chia 11du 8; chia 23 vừa đủ
Bài 1 :
Ta có : 11a - 11b và 3a - 2b chia hết cho 11 =:> 9a - 6b chia hết cho 11
=> ( 11a - 11b ) - ( 9a - 6b ) chia hết cho 11
=> 2a - 5b chia hết cho 11
=> điều phải chứng minh