Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trân Ni
Xem chi tiết
Đỗ Thanh Hải
1 tháng 8 2021 lúc 13:38

37 distinguish 

38 illiteracy

39 energetic

40 disconnected

41 anxiety

42 mysteriously

43 significant

44 frightening

45 repeatedly 

46 cancellation

47 disastifying 

48 products

49 disagree

50 typicallu

51 socialize

52 vegetarian

53 entrance

54 modernized

55 income

Nguyễn Trân Ni
Xem chi tiết
Đỗ Thanh Hải
1 tháng 8 2021 lúc 13:05

1 inconvenience

2 voluntarily

3 industrial

4 break-taking

5 intentively

6 breakdown 

7 preferable

8 economical

9 acceleration

10 misunderstanding

11 inhabitant

12 kidnapper

13 foggy

14 shouthern

15 decision

16 entertainment

17 information

18 pronounciation

Linh nguyễn
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 lúc 21:54

Gọi D là trung điểm AC

Trong mp (ABC), qua A kẻ đường thẳng vuông góc AB, qua C kẻ đường thẳng vuông góc AC, chúng cắt nhau tại H

Dễ dàng nhận ra hai tam giác vuông HAC và HAB có cặp cạnh huyền - cạnh góc vuông bằng nhau nên 2 tam giác bằng nhau

\(\Rightarrow HA=HC\Rightarrow H\) nằm trên trung trực AC (do AB=BC)

\(\Rightarrow H,A,D\) thẳng hàng

\(\left\{{}\begin{matrix}CH\perp BC\\SC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SHC\right)\Rightarrow BC\perp SH\)

Tương tự ta có \(AB\perp\left(SHA\right)\Rightarrow AB\perp SH\)

\(\Rightarrow SH\perp\left(ABC\right)\)

Gọi E là trung điểm AH \(\Rightarrow ME\) là đường trung bình tam giác SAH

\(\Rightarrow ME||SH\Rightarrow ME\perp\left(ABC\right)\) đồng thời \(ME=\dfrac{1}{2}SH\)

Gọi G là trung điểm BC \(\Rightarrow AG\perp BC\), từ D kẻ \(DF\perp BC\Rightarrow DF||AG\Rightarrow DF\) là đường trung bình tam giác AGC

\(\Rightarrow DF=\dfrac{1}{2}AG=\dfrac{a\sqrt{3}}{4}\)

AGCH là hình thang (AG song song CH vì cùng vuông góc BC) \(\Rightarrow EF\) là đường trung bình hình thang

\(\Rightarrow EF\perp BC\Rightarrow E,D,F\) thẳng hàng

\(AH=\dfrac{AD}{cos\widehat{DAH}}=\dfrac{AD}{cos\widehat{ABD}}=\dfrac{AD}{cos30^0}=\dfrac{a\sqrt{3}}{3}\)

\(ED=\dfrac{1}{2}AH=\dfrac{a\sqrt{3}}{6}\) (trung tuyến tam giác vuông)

\(\Rightarrow EF=ED+DF=\dfrac{5a\sqrt{3}}{12}\)

Trong tam giác vuông MEF, từ E kẻ \(EK\perp MF\)

\(\left\{{}\begin{matrix}ME\perp\left(ABC\right)\Rightarrow ME\perp BC\\EF\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(MEF\right)\Rightarrow BC\perp EK\)

\(\Rightarrow EK\perp\left(MBC\right)\Rightarrow EK=d\left(E;\left(MBC\right)\right)\)

\(SB=2NB\Rightarrow d\left(S;\left(MBC\right)\right)=2d\left(N;\left(MBC\right)\right)\)

\(SM=AM\Rightarrow d\left(S;\left(MBC\right)\right)=d\left(A;\left(MBC\right)\right)\)

\(AC=2DC\Rightarrow d\left(A;\left(MBC\right)\right)=2d\left(D;\left(MBC\right)\right)\)

\(\dfrac{EF}{DF}=\dfrac{5}{3}\Rightarrow d\left(E;\left(MBC\right)\right)=\dfrac{5}{3}d\left(D;\left(MBC\right)\right)=\dfrac{5}{3}d\left(N;\left(MBC\right)\right)\)

\(\Rightarrow EK=\dfrac{5}{3}.\dfrac{3a}{7}=\dfrac{5a}{7}\)

\(\dfrac{1}{EK^2}=\dfrac{1}{ME^2}+\dfrac{1}{EF^2}\Rightarrow ME=\dfrac{EF.EK}{\sqrt{EF^2-EK^2}}=5a\)

\(\Rightarrow SH=2ME=10a\)

\(V=\dfrac{1}{3}.10a.\dfrac{a^2\sqrt{3}}{4}=\dfrac{5a^3\sqrt{3}}{6}\)

Nguyễn Việt Lâm
20 tháng 1 lúc 21:55

loading...

Nguyễn Trang
Xem chi tiết
Nguyễn Trân Ni
Xem chi tiết
Thiện Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 13:46

1: vecto AC=(-1;-7)

=>VTPT là (-7;1)

PTTS là:

x=3-t và y=6-7t

Phương trình AC là:

-7(x-3)+1(y-6)=0

=>-7x+21+y-6=0

=>-7x+y+15=0

2: Tọa độ M là:

x=(3+2)/2=2,5 và y=(6-1)/2=2,5

PTTQ đường trung trực của AC là:

-7(x-2,5)+1(y-2,5)=0

=>-7x+17,5+y-2,5=0

=>-7x+y+15=0

3: \(AB=\sqrt{\left(-1-3\right)^2+\left(3-6\right)^2}=5\)

Phương trình (A) là:

(x-3)^2+(y-6)^2=AB^2=25

 

Nguyễn Trân Ni
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 15:02

2.1

ĐKXĐ: \(x\ge-\dfrac{1}{16}\)

\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\) (1)

Do \(x\ge-\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}\dfrac{32}{\sqrt{16x+1}+9}< \dfrac{32}{9}\\x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}>\dfrac{32}{9}\end{matrix}\right.\)

\(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\)

Nên (1) tương đương:

\(x-5=0\)

\(\Leftrightarrow x=5\)

Câu 2.2, 2.3 đề lỗi không dịch được

Dương Thanh Ngọc
Xem chi tiết
Nguyễn Trân Ni
Xem chi tiết
Đỗ Thanh Hải
2 tháng 8 2021 lúc 13:41

146 unemployed

147 communicative

148 disqualified 

149 widen

150 completely

151 eaten

153 underpaid

154 misbehaved

155 resignation

156 widespread

157 imprisonment

158 underestimated

159 justify

160 single-minded

161 standardized

162 anxiety

163 growth

146 accustomed