Tìm x thuộc Z thỏa mãn:
\(\left(x+2014\right)^2\)=\(64\left(x+2007\right)^3\)
Tìm tất cả các số nguyên x thỏa mãn: \(\left(x+2014\right)^2=64.\left(x+2007\right)^3\)
khá là "dễ" chỉ cần nhân tùm lum hết ra r` phân tích lại dc
pt<=>-(x+2006)(64x2+256959x+257921626)=0
<=>x=-2006
Tìm tất cả các số nguyên x thỏa mãn: \(\left(x+2014\right)^2=64.\left(x+2007\right)^3\)
Cho x, y, z thỏa mãn \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\). Chứng minh rằng: \(\left(x-z\right)^3=8\cdot\left(x-y\right)^2\left(y-z\right)\)
Áp dụng tc dtsbn:
\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)
Tìm các số nguyên x,y,z thỏa mãn:
\(\left(x-y\right)^{2014}+\left|x\right|+\left|y\right|=2\)
Cho \(x,y,z\in R\)Thỏa mãn
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)=3xyz\\\left(x^3+1\right)\left(y^3+1\right)\left(z^3+1\right)=\dfrac{81}{64}x^3y^3z^3\end{matrix}\right.\)
CMR \(xyz=0\)
\(\left(x^3+1\right)\left(y^3+1\right)\left(z^3+1\right)=\dfrac{81}{64}x^3y^3z^3\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^2y^2z^2\)
\(\Leftrightarrow3xyz\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^3y^3z^3\)
\(\Rightarrow\left[{}\begin{matrix}xyz=0\\\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\end{matrix}\right.\)
Nếu \(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\)
Ta có:
\(x^2-x+1=\dfrac{3}{4}x^2+\left(\dfrac{x}{2}-1\right)^2\ge\dfrac{3}{4}x^2\)
Tương tự: \(y^2-y+1\ge\dfrac{3}{4}y^2\) ; \(z^2-z+1\ge\dfrac{3}{4}z^2\)
Do các vế của các BĐT trên đều không âm, nhân vế với vế ta được:
\(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)\ge\dfrac{27}{64}x^2y^2z^2\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)
Thế vào điều kiện \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=3xyz\) ko thỏa mãn (loại)
Vậy \(xyz=0\)
Cho 3 số x;y;z thỏa mãn: \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}\)
Chứng minh rằng \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)
Đặt \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}=k\)=> \(\hept{\begin{cases}x=2012k\\y=2013k\\z=2014k\end{cases}}\)
khi đó, ta có: (x - z)3 = (2012k - 2014k)3 = (-2k)3 = -8k3
8(x - y)2(y - z) = 8(2012k - 2013k)2(2013 - 2014k) = 8(-k)2.(-k) = -8k3
=> (x - z)3 = 8(x - y)2(y - z)
chi 3 số x,y,z thỏa mãn : \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\)
C/M: \(4\left(x-y\right)\left(y-z\right)=\left(z-x\right)^2\)
Cho x,y thuộc Z thỏa mãn
\(\left(2x-3\right)^2+\left|y\right|=1\)
Tìm số cặp x,y thỏa mãn
=>\(\hept{\begin{cases}2x-3=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=0\end{cases}}\)
cho x,y,z>0 thỏa mãn \(\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)=8\)
Tìm giá trị nhỏ nhất của S=\(xyz\left(x+y+z\right)^3\)
(có thể dùng BDT \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\))
tks mn<3