chứng minh
x2-x-1<0 với mọi giá trị của x
giúp mik nha
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
1. chứng minh x4 - x + 1 = 0 vô nghiệm
2. chứng minh x4 - x2 + 1 = 0 vô nghiệm
3. chứng minh x4 - x3 + 1 = 0 vô nghiệm
4. chứng minh a2 + \(\dfrac{1}{a^2}\)
biết a khác 0
2) \(x^4-x^2+1=0\)(1)
Đặt: t=x2, khi đó:
(1)\(\Leftrightarrow t^2-t+1=0\)
\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(2\right)\)
\(\Rightarrow\left(2\right)\) vô nghiệm => (1) vô nghiệm
chứng minh biểu thúc không phụ thuộc vào biến:
a) (x-1)^3 - (x-1)(x^2+x+1)-3(1-x)x
chứng minh giúp mk với được ko
a, Biểu thức = x^3-3x^2+3x-1-(x^3-1)-3.(x-x^2)
=x^3-3x^2+3x-1-x^2+1-3x+3x^2 = 0
=> giá trị của biểu thức trên ko phụ thuộc vào biến
Mọi người giúp em làm bài này với, em đang cần gấp. Cảm ơn
Câu 2: Chứng minh x^3k+1 + x^2 + 1 chia hết cho x^2+x+ I.
Câu 3: Chứng minh x^3k+2 + x + 1 chia hết cho x^2 + x + 1.
Câu 4: Chứng minh x^6 − 1 chia hết cho x^4 +x2 + 1.
Chứng tỏ 1/x - 1/x+1 = 1/x(x+1)
Cái này chỉ cần vậy nè :
\(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x\left(x+1\right)}\)
\(\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
\(x+1-x=1\)
\(1=1\left(đpcm\right)\)
Có cách nào hay hơn chỉ mk với nhé.
\(\frac{1}{x}-\frac{1}{x+1}\)
\(=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}\)
\(=\frac{1}{x\left(x+1\right)}\)(đpcm)
Bài 1 : Rút gọn
b) 1/x-3-1/x+3+2x/9-x2
c) x+1/x-2+4-5x/x3+4x:x-2/x2+44
Bài 2 Cho A=x3-1/(x-1)(x+2) ( với x khác 1; x khác -2)
a) Chứng tỏ biểu thức A=x3-1/(x-1)(x+2)biết x=-3
b) chứng tỏ để A=1
Câu 1:
b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)
\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)
c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)
Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)
\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)
\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
a)chứng minh rằng : với mọi số tự nhiên n : (x+1)^4n+2 +(x-1)^4n+2 chia hết cho x^2 +1
b) chứng minh rằng với mọi số tự nhiên n : ( x^n -1) ( x^n+1 -1) chia hết cho (x+1)(x-1)
chứng minh 0=1?????
không chứng minh theo kiểu 0 x 0 = 1 x 0
-20=-20
16-36=25-45
42-4.9=52-5.9
42-2.4.9292+814814=52-2.5.9292+814814
(4−92)2(4−92)2=(5−92)2(5−92)2
4-9292=5-9292
4=5
4-4=5-4
0=1
Luôn có: (a-b)2=(b-a)2
\(\Leftrightarrow\)a-b=b-a\(\Leftrightarrow\)2a=2b\(\Leftrightarrow\)a=b
Ta chọn: a=0 và b=1 \(\rightarrow\)0=1
Vậy 0=1
chứng minh phản chứng căn x + căn x+2 <2 căn x+1