A=(-1)*(-1)2*(-1)3*(-1)4*(-1)5*........*(-1)98*(-2021)
Tính tổng
a)1+2-3-4+5+6-7-8+.......+2021+2022
b)100+98+99+94+........+2-99-97-95-....-1
1/
$A=1+2-3-4+5+6-7-8+....+2017+2018-2019-2020+2021+2022$
$=(1+2-3-4)+(5+6-7-8)+...+(2017+2018-2019-2020)+4043$
$=(-4)+(-4)+(-4)+...+(-4)+4043$
Số lần xuất hiện của -4 là: $[(2020-1):1+1]:4=505$
$A=(-4)\times 505+4043=2023$
a, 1-2+3-4+5-6+....+2021-2022
b, 1-6+2-7+3-8+4-9+.......+35-40
c, -1+2-3+4-5+6-.........-2021+2022
d, 1-4+2-5+3-6+.....+197-200
e, -1-2-3-4-5-....-199-200
a: =(-1)+(-1)+...+(-1)=-1011
b: =(-5)+(-5)+...+(-5)=-175
So sánh:
a) A=\(\dfrac{98^{88}+1}{98^{98}+1}\)và B=\(\dfrac{98^{89}+1}{98^{99}+1}\) b) C=\(\dfrac{2022^{2023}+1}{2022^{2021}+1}\)và D=\(\dfrac{2022^{2021}+1}{2022^{2019}+1}\)
a: \(98^{10}\cdot A=\dfrac{98^{98}+98^{10}}{98^{98}+1}=1+\dfrac{98^{10}-1}{98^{98}+1}\)
\(98^{10}\cdot B=\dfrac{98^{99}+98^{10}}{98^{99}+1}=1+\dfrac{98^{10}-1}{98^{99}+1}\)
98^88+1>98^99+1
=>A<B
b: \(\dfrac{1}{2022^2}\cdot C=\dfrac{2022^{2023}+1}{2022^{2023}+2022^2}=1+\dfrac{1-2022^2}{2022^{2023}+2022^2}\)
\(\dfrac{1}{2022^2}\cdot D=\dfrac{2022^{2021}+1}{2022^{2021}+2022^2}=1+\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
2022^2023>2022^2021
=>2022^2023+2022^2>2022^2021+2022^2
=>\(\dfrac{2022^2-1}{2022^{2023}+2022^2}< \dfrac{2022^2-1}{2022^{2021}+2022^2}\)
=>\(\dfrac{1-2022^2}{2022^{2023}+2022^2}>\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
=>C>D
Bài 1: Tính tổng:
a) S = 1+2+3+….+2021 b) P = 1+3+5+……+2021
c) Q = 2+4+6+.......+ 2020 d) M = 1+4+7+.....+298
a) \(S=1+2+3+...+2021\)
\(=\left(2021+1\right).2021:2\)
\(=2043231\)
b) \(P=1+3+5+...+2021\)
\(=\left(2021+1\right).[\left(2021-1\right):2+1]:2\)
\(=2022.1011:2\)
\(=1022121\)
1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
Tính A=1/2×3×4+1/3×4×5+1/4×5×6+...+1/2019×2020×2021
a)M=-2021-68+2021-17-68
b)B=1-2+3-4+5-6+.....+991-1000
c)C=1-2-3+4+5-6-7+8+.......-998-999+1000
a: M=-2021+2021-68-68+17
=-119
b: B=(-1)+(-1)+...+(-1)
=-1x500
=-500
c: C=(1-2-3+4)+(5-6-7+8)+...+(997-998-999+1000)
=0
a,7/4+-3/5
b,2021-(1/3)^2 x 3^2
c,7,5 x(-3/5)
d,(-1/4)^2 x 4/11+7/11 x(-1/4)^2
e, A= 1/4 +1/4^2+1/4^3+...+1/4^2020<1/3
a: \(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35-12}{20}=\dfrac{23}{20}\)
d: \(\left(-\dfrac{1}{4}\right)^2\cdot\dfrac{4}{11}+\dfrac{7}{11}\cdot\left(-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
\(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35}{20}+\dfrac{-12}{20}=\dfrac{23}{20}\)
so sánh a và b biết : A=1/2+1/2^2+...+1/2^2021 và A= 1/3+1/4+1/5+1/60
Lời giải:
$A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}$
$2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2020}}$
$\Rightarrow 2A-A=1-\frac{1}{2^{2021}}$
$\Rightarrow A=1-\frac{1}{2^{2021}}
$B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{60}=\frac{4}{5}=1-\frac{1}{5}$
Hiển nhiên $\frac{1}{2^{2021}}< \frac{1}{5}\Rightarrow 1-\frac{1}{2^{2021}}> 1-\frac{1}{5}$
$\Rightarrow A> B$