cm : nếu x+2y chia hết cho 5 thỏa và 3x +16y chia hết cho 5
Chứng minh nếu x+2y chia hết cho 5 thì 3x+16y chia hết cho 5 (x,y thuộc N*)
\(x+2y⋮5\)
\(\Leftrightarrow3x+6y⋮5\)
\(\Leftrightarrow3x+6y+10y⋮5\)
\(\Leftrightarrow3x+16y⋮5\left(\text{đ}pcm\right)\)
cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
Lời giải:
a.
\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)
$\Leftrightarrow 15x^2+10y\vdots 11$
$\Leftrightarrow 15x^2+10y-22y\vdots 11$
$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)
b.
$2x+3y^2\vdots 7$
$\Leftrightarrow 3(2x+3y^2)\vdots 7$
$\Leftrightarrow 6x+9y^2\vdots 7$
$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$
$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)
Chứng minh nếu
X+2y chia hết cho 5 thì
3x+16y chia hết cho 5 (x,y thuộc N*)
Kiểm tra giúp mik nha
Ta có: x+2y chia hết cho 5
=> 3x+ y6 chia hết cho 5
=> 3x+ 6y + 10y chia hết cho 5
=> 3x + 16y chia hết cho 5 ( đpcm )
Ta có
\(x+2y⋮5\)
\(\Rightarrow3x+y6⋮5\)
\(\Rightarrow3x+6y+10y⋮5\)
\(\Rightarrow3x+16y⋮5\)
=>đpcm
cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
a) \(3x^2+2y⋮11\Leftrightarrow16\left(3x^2+2y\right)⋮11\Leftrightarrow48x^2-33x^2+32y-44y⋮11\)
\(\Leftrightarrow15x^2-12y⋮11\)
b) \(2x+3y^2⋮7\Leftrightarrow10\left(2x+3y^2\right)⋮7\Leftrightarrow20x-14x+30y^2-14y^2⋮7\)
\(\Leftrightarrow6x+16y^2⋮7\)
Chứng tỏ rằng: Nếu x,y thuộc N và 3x-4y chia hết cho 5 htif x+2y chia hết cho 5
CMR nếu n thuộc n
và x+2y chia hết cho 5 thì 3x-4y chia hết cho 5
ta có :
7 . ( x + 2y ) + 3x - 4y = 7x + 14y + 3x - 4y = 10x + 10y chia hết cho 5
mà x + 2y chia hết cho 5
=> 7 . ( x + 2y ) chia hết cho 5
=> 3x - 4y chia hết cho 5
3x-4y=3x+6y-6y-4y=3(x+2y)-10y
x+2 chia hết cho 5=>3(x+2y)chia hết cho 5 (1)
10 chia hết cho 5 =>10y chia hết cho 5 (2)
từ (1) và (2) =>3(x+2y)-10y chia hết cho 5 hay 3x-4y chia hết cho 5=>đmcp
x+2y chia het cho 5
3(x+2y) chia het cho 5
3x+6y chia het cho 5
3x-4y+10y chia het cho 5
10y chia het cho 5
=> 3x-4y chia het cho 5
Cho x,y là số nguyên thỏa mãn 3x-5y chia hết cho 23. Chứng minh rằng 5x-16y cũng thỏa mãn chia hết cho 23 ?
xét hiệu A=5(3x-5y)-3(5x-16y)=23y
=> A chia hết cho 23,mà 3x-5y chia hết cho 23=>3(5x-16y) chia hết cho 23
Mà (3;23)=1=>5x-16y chia hết cho 23(đpcm)
Chứng minh rằng : nếu x+2y chia hết cho 5 thì 3x- 4y chia hết cho 5
x + 2y chia hết cho 5
=> 3(x + 2y) chia hết cho 5
=>3x + 6y chia hết cho 5
=> 3x chia hết cho 5 (1)
x + 2y chia hết cho 5
=> -2(x + 2y) chia hết cho 5
=> -2x - 4y chia hết cho 5
=> -4y chia hết cho 5 và (1)
=> 3x - 4y chia hết cho 5
x + 2y chia hết cho 5
=> 3(x + 2y) chia hết cho 5
=>3x + 6y chia hết cho 5
=> 3x chia hết cho 5 (1)
x + 2y chia hết cho 5
=> -2(x + 2y) chia hết cho 5
=> -2x - 4y chia hết cho 5
=> -4y chia hết cho 5 và (1)
=> 3x - 4y chia hết cho 5
Cho x,y là số tự nhiên. Chứng minh rằng nếu x + 2y chia hết cho 5 thì 3x - 4y chia hết cho 5.